Genetic diversity and population structure of Terapon jarbua (Forskål, 1775) (Teleostei, Terapontidae) in Malaysian waters

Shyama Sundari Devi Chanthran1,2, Phaik-Eem Lim1, Yuan Li3, Te-Yu Liao4, Sze-Wan Poong1, Jianguo Du3.5,6, Muhammad Ali Syed Hussein7, Ahemad Sade8, Richard Rumpet9, Kar-Hoe Loh1

1 Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia 2 Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia 3 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China 4 Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan 5 Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone in Zhangzhou, Xiamen 361005, China 6 Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China 7 Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia 8 Department of Fisheries Sabah, Kota Kinabalu 88624, Sabah, Malaysia 9 Fisheries Research Institute, Sarawak, Department of Fisheries Malaysia, Kuching 93744, Sarawak, Malaysia

Corresponding author: Kar-Hoe Loh (khloh@um.edu.my)

Abstract

A background study is important for the conservation and stock management of a species. Terapon jarbua is a coastal Indo-Pacific species, sourced for human consumption. This study examined 134 samples from the central west and east coasts of Peninsular (West) Malaysia and East Malaysia. A 1446-bp concatenated dataset of mtDNA COI and Cyt b sequences was used in this study and 83 haplotypes were identified, of which 79 are unique haplotypes and four are shared haplotypes. Populations of T. jarbua in Malaysia are genetically heterogenous as shown by the high level of haplotype diversity ranging from 0.9167–0.9952, low nucleotide diversity ranging from 0.0288–0.3434, and high F ST values (within population genetic variation). Population genetic structuring is not distinct as shown by the shared haplotypes between geographic populations and mixtures of haplotypes from different populations within the same genetic cluster.
dispersal power of *T. jarbua* through its high mobility and rapid adaptability to a newly colonized area. Further studies can be conducted using larger sample size and temporal replicates, samples collected from other areas of geographical distributions, and sequence data from other mtDNA genes or information based on nuclear DNA. This research contributed useful data for future large scale biogeographical and taxonomic studies of this species.

Animal ethics

The fish species that was employed in this study is not categorized as endangered species under the IUCN list and all the samples were collected from fish markets and landing sites.

Acknowledgements

This study was supported by the University of Malaya, Research University Grant (RU009E-2018), Top 100 Universities in The World Fund (TU001-2018), IF030B-2017; Ministry of Science and Technology (108-2119-M-110-005) and the China-ASEAN Maritime Cooperation Fund project “Monitoring and conservation of the coastal ecosystem in the South China Sea”. We would also like to thank Surajwaran Mangaleswaran, an English professional for checking on the language used in this paper.

References

