A Quasi-resonant Soft Switching 48-pulse PWM Inverter with Closed Loop Current Control for the Realization of Static Synchronous Series Compensator (SSSC)

Taha Selim Ustun and Saad Mekhilef

1Department of Electrical Engineering University Malaya Kuala Lumpur, Malaysia
2Department of Electrical Engineering University Malaya Kuala Lumpur, Malaysia

Abstract: This paper discusses a 48-pulse H-bridge PWM inverter which utilizes a quasi-resonant topology that is comprised of a clamping circuit and a resonant circuit, in order to achieve soft switching. The use of a multi-pulse inverter increases the quality of the output whereas the implementation of soft switching technique increases the overall efficiency of the inverter by decreasing switching losses that reach considerable values with the abundant number of switches and a switching frequency of the order of KHz. Furthermore, in order to be able to respond load variations a feedback loop is constructed with a PI controller to realize closed loop current control. This system is aimed to be a building block for FACTS devices such as Static Synchronous Series Compensator (SSSC). The motivation of designing a more efficient and dynamic inverter with high power quality is to construct more efficient and effective FACTS devices.

Key words: multi-pulse, FACTS, closed loop PI control, power line compensation, power flow control, PWM inverter, SSSC, H-bridge Inverter

Biography:
Taha Selim USTUN received his Bachelors degree in Electrical and Electronics Engineering from Middle East Technical University, TURKEY in 2007. He is currently an M. S. candidate in the Department of Electrical Engineering, University Malaya, Malaysia. His research interests are Power electronics, Power Systems and FACTS devices.

INTRODUCTION

Worldwide transmission systems are undergoing continuous changes and restructuring. They are becoming more heavily loaded and are being operated in ways not originally envisioned. Transmission systems must be flexible to react to more diverse generation and load patterns. In addition, the economical utilization of transmission system assets is of vital importance to enable utilities in industrialized countries to remain competitive and to survive. In developing countries, the optimized use of transmission systems investments is also important to support industry, create employment and utilize efficiently scarce economic resources.

The need for more efficient electricity systems management has given rise to innovative technologies in power generation and transmission. The combined cycle power station is a good example of a new development in power generation and flexible AC transmission systems, FACTS as they are generally known, are new devices that improve transmission systems. Flexible AC Transmission Systems (FACTS) is a technology that responds to these needs. It significantly alters the way transmission systems are developed and controlled together with improvements in asset utilization, system flexibility and system performance. (Habur, K., D.O. Leary, 2005) FACTS controllers are capable of controlling the network condition in a very fast manner and this feature of FACTS can be exploited to improve the stability and reliability of the system. (Panda, S., N.P. Padhy, 2007).

Various FACTS devices are used to control dynamically the voltage, impedance and phase angle of high voltage AC transmission lines which in turn enables us to operate a transmission line more closely to its thermal capacity thus increasing its transmission capacity, to change the impedance of transmission lines and control the power flow and to damp and filter undesired transients over the transmission system. (Asare, P., T. Diez, 1994) The most widely known types of these are:
Static Synchronous Series Compensator (SSSC) is one of the important members of FACTS family which can be installed in series on the transmission lines. With the capability of changing its reactance characteristic from capacitive to inductive, SSSC is very effective in controlling power flow in power systems. (Gyugi, L., C.D. Schauder, 1997)

All of the above mentioned FACTS devices are based on inverters constructed with semi-conductor devices. It is already known that continuous switching of these devices at high frequency levels inevitably bring along power quality and efficiency problems. In order to improve power quality, which is doubtlessly a very important asset if not the most, multi-pulse inverters are used so that harmonics up to nth order – n being the number of pulses – are automatically eliminated. A multi-pulse inverter consists of several 6-pulse inverters and constitutes space and weight problems. It is possible to reduce the volume of the modules by increasing the operating frequency (Chien-Ming, W., 2007), however with increasing number of switches and switching frequency the power lost in switching attains considerable values. (Smith, K.M. Jr., K.M. Smedley, 1997) In response to this soft switching techniques are used which ensure that switching takes place when either the component voltage (zero voltage switching) or the component current (zero current switching) is zero. (Divan, D.M., 1989)

Various soft switching techniques have been developed since 1970s, for power converters to reduce switching stresses, power losses and electromagnetic interference. (Divan, D.M., 1989) There are many topologies of soft-switching inverters, such as resonant dc link, resonant snubber, and zero-current transition inverters (Mao, H., F.C. Lee, 1996). These inverters can be classified in two major groups as resonant dc link inverters and resonant snubber inverters. The resonant dc link provides zero dc-link voltage or current intervals to all phase legs during switching instants, whereas the resonant snubber diverts the current from and/or provides zero voltage intervals to each main device at switching instants. (Peng, F.Z., G.J. Su, 2002)

The circuit shown in Figure 1 is a simple example for resonant snubber circuit which deals with each switch individually to ensure zero voltage (or depending on the case, zero current) switching. In the case of multi-pulse inverters consisting of n many six-pulse inverters and n*6 many switches this kind of topologies are not feasible since it is not possible to construct an individual circuit for every single switch. For this reason resonant dc link circuits, shown in Figure 2, which controls the voltage level or current flow for all phase legs are more practical for multi-pulse inverters.

Fig. 1: (left). A sample Resonant Snubber circuit

Considering all these concepts this paper focuses on a 48-pulse PWM inverter with a quasi-resonant topology and a closed loop current control. A multi-pulse inverter is used to improve power quality whereas a soft switching technique is used to eliminate the power loss on switches. A closed loop current control implementing abc-to-dq coordinates transformation and a PI controller is included to sense the load variations and take necessary precautions to keep the current at a desired level.
Following the organization of the paper; firstly the analysis of the system, theory of operation and some key design considerations such as details about the phase shift of the gate pulse patterns as well as the configuration of the magnetic coupling circuit and the phase shifting transformers, resonance frequency, closed loop current control strategy are studied.

Then this model is simulated in MATLAB to verify proper operation. Resulting waveforms including output voltages, currents along with resonance circuit voltage and current waveforms and control signals are also presented to show the operation of the system and its response to changes. An FFT analysis is performed on the output current to see the harmonic components and total harmonic distortion (THD). Finally, the paper is concluded with the assessment of the work performed in the Conclusion section.

System Configuration:

The system shown above in Figure 3 is the combination of three distinct modules with distinct tasks. These are;

a. 48-pulse inverter which inherently filters out the harmonic components up to \(47^{th}\) order and outputs a low-THD, high quality waveform

b. DC supply with Quasi-resonant topology which is a deviated DC supply in the sense that the output of this supply is not a constant dc value but rather a dc value that occasionally goes down to zero whenever the resonance is triggered. This is useful in realization of zero voltage switching technique to reduce switching losses over the semi-conductor switches

c. Current Control Feedback system and PWM generator which is used to generate the PWM signals to trigger the inverter switches, then measure the output voltage and compare it to a pre-determined value and finally adjust PWM gating signals such that the output obtained complies with the pre-determined value. Apart from this the closed loop current control enables the inverter topology to feed variable loads by reacting to load variations.

Overall system is a combination of these three modules which are interconnected to each other and expected to operate in harmony so as to get the desired output. 48-pulse inverter constitutes the backbone of the system by performing DC/AC conversion with low harmonic distortion whereas DC supply with quasi-resonant topology contributes by realizing soft switching and closed loop current control topology contributes by controlling the output current with PWM gating signals.

48-pulse Inverter:

Eight 6-pulse inverters are combined to obtain a 48-pulse with the purpose of reducing harmonic content. Table 1 shows the values of phase shifts which are applied to the inverter voltages in two steps, namely in firing pulses and in Zig-zag transformers, to create a 48-pulse waveform at the output with the harmonic content in the order of \(n= 48m\pm1\), where \(m= 0, 1, 2,\ldots\) (Erinmez, I.A., A.M. Foss, 1998; Haro, P.Z., J.M. Ramirez, 2005).
Fig. 3: The overall system simulated in MATLAB

Table 1: Phase Shifts for a 48-pulse VSI.

<table>
<thead>
<tr>
<th>Coupling Transformer</th>
<th>Gate Pulse Pattern</th>
<th>Phase Shifting Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y – Y</td>
<td>+11.25°</td>
<td>-11.25°</td>
</tr>
<tr>
<td>Δ – Y</td>
<td>-18.75°</td>
<td>-11.25°</td>
</tr>
<tr>
<td>Y – Y</td>
<td>-3.75°</td>
<td>+3.75°</td>
</tr>
<tr>
<td>Δ – Y</td>
<td>-33.75°</td>
<td>+3.75°</td>
</tr>
<tr>
<td>Y – Y</td>
<td>+3.75°</td>
<td>-3.75°</td>
</tr>
<tr>
<td>Δ – Y</td>
<td>-26.25°</td>
<td>-3.75°</td>
</tr>
<tr>
<td>Y – Y</td>
<td>-11.25°</td>
<td>+11.25°</td>
</tr>
<tr>
<td>Δ – Y</td>
<td>-41.25°</td>
<td>+11.25°</td>
</tr>
</tbody>
</table>

The secondary sides of the coupling transformers are connected in series to sum the output voltages of individual VSIs and obtain a multi-pulse phase voltage which can be expressed mathematically as follows:

\[
V_{ab_{48}}(t) = 8 \sum_{m=1}^{\infty} V_{ab_{m}} \sin \left(\omega t + 18.75^\circ m + 11.25^\circ x \right) \quad (1)
\]

\[
V_{an_{48}}(t) = \frac{8}{\sqrt{3}} \sum_{m=1}^{\infty} V_{an_{m}} \sin \left(\omega t + 18.75^\circ m - 18.75^\circ x \right) \quad (2)
\]

\[\forall m = 48r \pm 1, \ r = 1, 2, \ldots\]
Both equations (1) and (2) which are phase-to-phase and phase-to-neutral voltage representations, respectively, show that harmonics up to 47th order are inherently filtered.

The signalization of the 48-pulse inverter is realized as shown in the Figure 4. Closed loop current controller, which is explained below in detail, generates a set of PWM signals. These signals are generated for the inverter having -41.25° of gate pulse phase and directly fed to the corresponding inverter. PWM signals for the remaining inverters are obtained by applying relevant phase shifts to the set of PWM signals generated. For example, in order to obtain the pulses for the inverter having -11.25° of gate pulse phase $+30^\circ$ of phase shift is applied to the closed loop current controller’s output.

![Fig. 4: 48-pulse inverter signalization diagram](image)

The reason for generating PWM signals of the inverter having the largest negative gate pulse pattern is practical concerns. In practice, the phase shifting of the pulses is realized by applying a delay in the first cycle. The generated set of pulses is the earliest set appearing at the time-line and since it is not possible to apply a negative delay the earliest appearing set is generated and the rest are delayed accordingly.

b. Quasi-Resonant Topology:

Considering all the information about different soft switching topologies presented in introduction the dc link quasi-resonant topology, shown in Figure 5, is used in the system. It is used to bring the input voltage to zero occasionally so that IGBTs in inverters can turn-on and/or turn-off while Zero Voltage Switching conditions are satisfied.

In traditional dc link voltage inverter, a large capacitor in excess of hundreds of microfarads is normally used to provide a smooth dc voltage for the power inverter. As the energy stored in large capacitor is considerable, it is not desirable to pull the voltage of a large capacitor down to zero frequently because the energy involved in the resonant process is large, leading to excessive conduction loss in the resonant circuit and requirement of high current ratings for the power devices in the quasi-resonant circuit. (Hui, S.Y.R., et al., 1996)

On the contrary in this circuit a relatively smaller capacitor, namely C_{r1}, is used. During non-switching periods of the inverter C_{r1} is in parallel with C_1, which provides the voltage smoothing function. Just before each inverter switching, the dc link voltage needs to be pulled down to zero for ZVS. First C_1 is unclamped from the circuit and the voltage on the small capacitor is pulled down to zero. (Hui, S.Y.R., et al., 1996) Thus a faster and more efficient resonance is achieved.

When appropriate S_b, S_{r1} and S_{r2} pulses are supplied, as shown in Figure 6, this circuit operates in five different modes. In the first mode C_{r1} is in parallel with C_1 and charged to a DC value, then in second mode resonance is triggered, C_1 is unclamped and C_{r1} discharges over C_{r2} and L_r. Third operation mode is when the voltage over C_{r1}discharges completely and stays zero while the inverter switching(s) is(are) performed. In the fourth and fifth operation modes voltages over C_{r1} and C_{r2} are arranged for the next resonance. The voltages observed over C_{r1} and C_{r2} are given in Figure 7. It is obvious that the period between t_2 and t_3 is when Zero Voltage Switching is realized. (El-Moursi, M.S., A.M. Sharaf, 2005)
Fig. 5: Quasi-Resonant Topology

Fig. 6: Sb, Sr1 and Sr2 pulses
Control of the circuit is realized with Sb, Sr1 and Sr2 pulses. Basically these pulses first unclamp the large capacitor C1 from the circuit, and then trigger the resonance. The operation frequency of these control signals is set to 200 KHz meaning that the input voltage is pulled down to zero once in every 5 usecnds. This value is a hundred-fold of PWM generator’s operation frequency and thus is sufficient to ensure the realization of zero voltage switching. Once the resonance is triggered the resonance circuit is composed of Cr1, Cr2 and Lr. Considering their values are:

\[
\begin{align*}
Cr1 &= 4.7 \times 10^{-7} \text{ F} \\
Cr2 &= 6.7 \times 10^{-7} \text{ F} \\
Lr &= 8 \times 10^{-7} \text{ H}
\end{align*}
\]

the resonance frequency can be calculated from the equation:

\[
2\pi f_{\text{resonance}} = \frac{1}{(Lr \times Ceq)^{\frac{1}{2}}}
\]

where \(Ceq = \frac{Cr1 \times Cr2}{(Cr1 + Cr2)} \)

The resonance frequency is worked out to be 21.28 MHz which is high enough to ensure complete discharge before the states of control signals change.

c. Closed Loop Control- Feedback Loop:

The implemented feedback loop makes use of Park transformation on the measured three-phase output currents. This conversion is also referred to as abc-to-dq transformation and used to convert the measured currents to rotating synchronous coordinates d-q. Thanks to the coordinate transformations id and iq are dc components thus it is more convenient to perform calculations. (Kazmierkowski, M.P., L. Malesani, 1998) The following equations are used for the said transformation:

\[
\begin{align*}
V_d &= \frac{2}{3}[Va \times \sin(wt) + Vb \times \sin(wt - 2\pi/3) + Vc \times \sin(wt + 2\pi/3)] \\
V_q &= \frac{2}{3}[Va \times \cos(wt) + Vb \times \cos(wt - 2\pi/3) + Vc \times \cos(wt + 2\pi/3)] \\
V_o &= \frac{1}{3}[Va + Vb + Vc]
\end{align*}
\]

Once the calculation is performed and new modulation index and new set of gate pulses are worked out reverse Park transformation is realized with the help of following equations:

\[
\begin{align*}
Va &= [Vd \times \sin(wt) + Vq \times \cos(wt) + V_o] \\
Vb &= [Vd \times \sin(wt - 2\pi/3) + Vq \times \cos(wt - 2\pi/3) + V_o] \\
Vc &= [Vd \times \sin(wt + 2\pi/3) + Vq \times \cos(wt + 2\pi/3) + V_o]
\end{align*}
\]
As it can be seen in Figure 8, after applying Park transformation the measured three-phase currents are fed to PI controller along with reference \(I_d \) and \(I_q \) signals. PI controller outputs new modulation index \(m \) and \(I_d-I_q \) values which are transformed back to abc coordinates and used to generate new PWM gate pulses.

Simulation Results:

In order to verify proper 48-pulse generation, soft switching and current control the system explained in the previous section is simulated in SimPowerSystems which is a MATLAB-based modern design tool having models of typical power equipment. PWM generator is set to 2Khz carrier frequency. Sine wave supplied by the current control loop has 60 Hz frequency. DC supply in the quasi-resonant circuit has 750 Vdc with resonance and 48-pulse topology a much higher value is observed at the output. Two inductive loads are connected in parallel one of which is connected to the system at \(t=0.05 \) whereas the other one always stays connected. This helps in judging the closed-loop current control performance.

When the simulation is performed in MATLAB the output waveform shown in Figure 9, is obtained and it is worthy to note here that the change in the inverter output voltage occurs at \(t=0.05 \) due to the change in gating signals in order to keep the load current at 1.0 pu value.

Figure 10 shows one set of PWM signals, labc_inv signal output of the current regulator which is eventually used to generate PWM gating signals and modulation index \(m \). The change in the PWM signal’s pattern, labc_inv signal’s amplitude and modulation index due to the change in load can be clearly seen.

Quasi-resonant circuit operates and pulls the inverter voltage once in every 5 useconds. With the effect of freewheeling diodes of bridge inverters sometimes the voltage prematurely returns back to zero as shown in Figure 11. The voltage and current waveforms shown in Figure 12 and Figure 13, respectively are the voltages appearing on the capacitors and currents flowing through the inductors in the Quasi-Resonant circuit.

It is clearly seen that the voltage of large dc link capacitor \(C1 \) remains constant when the resonance occurs in the circuit and zero voltage is attained. Since the energy stored in this large capacitor does not change in time the relevant power losses do not exist. As for the resonant capacitors’ voltages (\(C_{r1} \) and \(C_{r2} \)), the resonance appears on these capacitors and the variation in the voltage over time can be clearly seen.
The inductor \(L\) is a very large inductor and generally is the inherent output inductance of a dc voltage supply while \(L_r\) is a small inductor which maintains the resonance in the system when it is desired. Both of the currents have the characteristics of resonant currents. When the load of the Quasi-Resonant circuit is a heavy inductive load with constant current sink in that case the current flowing through inductor \(L\) is a constant value whereas a resonant current flows through \(L_r\).

Finally FFT analyses of two states, i.e. before and after the secondary load is taken to the system are given below in Figure 14 and Figure 15. The analysis is performed up to 40th level, 2400 Hz. The resulting THD values are relatively higher for a 48-pulse inverter; this fact is caused by the awkward input voltage supplied by quasi-resonant topology.
Fig. 11: Input Voltage (Quasi-resonant topology's output voltage)

Fig. 12: From top to bottom: Voltages of the capacitors C1 (large capacitor), C1r (resonant 2 capacitor), C1 (output capacitor, resonant 1 capacitor)
Fig. 13: From top to bottom: Currents flowing through the inductors IL (input inductor, mostly Voltage source's inherent inductor), ILr (resonant inductor)

Fig. 14: FFT analysis of output current (before t = 0.05)
Conclusion:

This paper presents a 48-pulse PWM inverter constructed with eight individual IGBT bridge inverters and equipped with a quasi-resonant topology at the source side and with a closed loop current control at the load side in order to respond to two of the main problems in power electronics which are, respectively, high switching losses and current control in case of large load variations. According to simulation results the system under consideration operates satisfactorily, including all of its sub-modules meaning that a more efficient multi-pulse inverter has been successfully designed and simulated. The next step that should be taken is to do the hardware work of the newly designed system. However it is worthy to note that MATLAB implements ideal switching on IGBTs so soft switching phenomena should be considered with care when the system is implemented.

REFERENCES

