TECHNOLOGY FOCUS

74 DRILLING AND COMPLETION FLUIDS
 Badrul Mohamed Jan, SPE, Researcher and Academic Lecturer, University of Malaya

75 Novel Drilling Fluids Enable Record High-Temperature Well Offshore Malaysia

78 Case Study Shows Benefits of Applying Hollow Glass Spheres to Drilling Fluids

80 Wellbore Strengthening in Shales With Nanoparticle-Based Drilling Fluids

82 Acoustic Measurements Aid Mechanical-Damage Characterization in Proppant Packs

86 HORIZONTAL AND COMPLEX-TRAJECTORY WELLS
 Jon Ruszka, SPE, Drilling Adviser, Baker Hughes

87 Smart Horizontal Wells for Development of Thin-Oil-Rim Reservoirs

91 Optimizing Spacing of Multistage-Fractured Horizontal Wells in Gas Reservoirs

94 Bilinear Flow in Horizontal Wells in a Homogeneous Reservoir

96 GAS PRODUCTION TECHNOLOGY
 Scott J. Wilson, SPE, Senior Vice President, Ryder Scott Co.

97 Prediction of Critical Gas Velocity of Liquid Unloading for Entire Well Deviation

100 Controlled-Freeze-Zone Technology for the Distillation of High-CO₂ Natural Gas

102 Technology-Driven Approach To Develop Shale Gas in Saudi Arabia

104 OFFSHORE PRODUCTION AND FLOW ASSURANCE
 Sally A. Thomas, SPE, Principal Engineer, Production Technology, ConocoPhillips

105 ICD Well History and Future Use in a Giant Oil Field Offshore Abu Dhabi

108 Increasing Production by Applying Active Slug-Suppression Technology

110 Crown-Plug Pulling Performed as Riserless Light Well Intervention in the Gulf of Mexico

The complete SPE technical papers featured in this issue are available free to SPE members for two months at www.spe.org/jpt.
Drilling and Completion Fluids

Badrul Mohamed Jan, SPE, Researcher and Academic Lecturer, University of Malaya

This year marked the second year after completing my tenure as the deputy director of the University of Malaya (UM) Center of Innovation and Commercialization (UMCIC). UMCIC is the technology-transfer office in the UM, which is responsible for protecting UM’s inventions through intellectual-property registration such as patents and copyrights. Despite that, this year remained a busy year for me because it is time to restructure my research and teaching endeavors. What I miss the most is that I am still not able to invest in more relaxing rounds of golf.

As an academic lecturer and researcher in a Malaysian public university, I am often asked about the future of the upstream oil and gas industry. Most students are worried about the uncertainty of the industry. With unstable and low oil prices, which has led to massive job cuts for companies to stay afloat and remain relevant, many students are skeptical about pursuing petroleum engineering degrees. Not long ago, petroleum engineering bachelor’s degrees promised a bright and well-paid career. It used to bring in a six-figure salary. Unfortunately, now the luster has vanished with the slide in oil price. The rest, as they say, is history.

Gail Tverberg, who is an actuary interested in finite world issues, has listed 10 reasons that a severe drop in oil price is a problem. At the top the list is, “If the price of oil is too low, it will simply be left in the ground.” Low oil prices translate to a rapid drop in production. They will also lead to a series of secondary effects such as debt defaults from deflation, loss of jobs, collapse of oil exporters, and loss of credit needed for exports. These will eventually lead to a rapid decline in oil production. In addition, secondary and tertiary recovery, specifically enhanced oil recovery (EOR), will be out of reach. I feel the industry needs to reinvent itself. It needs to think out of the box and make use of novel ideas and technology to maneuver during the challenging time.

This year, the Federal Institute for Geosciences and Natural Resources, which is based in Germany, in its annual report, highlights a fascinating microbial EOR (MEOR) project that uses microorganisms in a conventionally depleted reservoir. It is a pilot reservoir project south of Beijing to determine “what microbes occur in the deposit and what metabolites they secrete (i.e., the substances that improve oil solubility).” The contemplation of MEOR process marks a distinct departure from conventional wisdom. One of the major findings from the pilot project shows that microbes are normally undesirable intruders in oil reservoirs. They transform hydrocarbons into tar-like heavy fuel oil. In addition, oil producers ought to productively make use of something that is in the reservoir to begin with. It makes the tertiary-recovery process more environmentally friendly and, under specific conditions, perhaps even less costly.

So, is petroleum engineering a sunset industry? If Tiger Woods can change his game, why not we?

I hope you enjoyed and benefited from the selected and highlighted papers. There are other interesting papers on the recommended-reading list. For further reading, the OnePetro online library has additional papers. JPT

Recommended additional reading at OnePetro: www.onepetro.org.

IPTC 17801 Innovative Nonaqueous-Fluids Technology Improves Drilling Efficiency Significantly in Dealing With Divalent Complex Salt Formation Under HP/HT Conditions by Da Yin, PetroChina, et al.

IPTC 17913 Successful Application of Customized Fluid Using Specialized Synthetic Polymer in High-Pressure Wells To Mitigate Differential-Sticking Problems by M.S. Al-Muhailan, KOC, et al.

IPTC 18217 Successful Application of Innovative Technology Improves Lubricity of High-Performance Water-Based-Mud Systems in Challenging Environments by A. Maliardi, Eni, et al.

Badrul Mohamed Jan, SPE, is a researcher and academic lecturer attached to the Department of Chemical Engineering, UM, Malaysia. He holds BS, MS, and PhD degrees in petroleum engineering from New Mexico Institute of Mining and Technology. Jan’s research areas and interests include the development of superlightweight completion fluid for underbalanced perforation and ultralow-interfacial-tension microemulsion for EOR. He has published numerous technical-conference and journal papers. Jan has participated in the SPE mentor/mentee volunteer program for 2 years. He is also the current adviser to the SPE-UM student chapter and a member of the JPT Editorial Committee. Jan was the deputy director of the UMCIC.
2015 JPT Editorial Committee

Syed Ali
Chairperson, Technical Advisor, Schlumberger

Bernt Aadnøy, Professor of Petroleum Engineering, University of Stavanger

William Bailey
Principal Reservoir Engineer, Schlumberger

Ian G. Ball
Technical Director Intecsea (UK)

Mike Berry, Mike Berry Consulting

Maria Capello, Consultant, Kuwait Oil Company

Robert B. Carpenter
Senior Advisor-Cementing, Chevron ETC

Simon Chipperfield
Team Leader Central Gas Team/Gas Exploitation, Eastern Australia Development, Santos

Nicholas Clem
Director, Unconventional Completions North America, Baker Hughes

Alex Crabtree
Senior Advisor, Hess Corporation

Alexandre Emerick
Reservoir Engineer, Petrobras Research Center

Niall Fleming
Leading Advisor Well Productivity & Stimulation, Statoil

Ted Frankiewicz
Engineering Advisor, SPEC Services

Emmanuel Garland
Special Advisor to the HSE Vice President, Total

Stephen Goodyear,
Team Lead EOR Deployment, SME Gas Injection, Shell

Reid Grigg, Senior Engineer/Section Head, Gas Flooding Processes and Flow Heterogeneities, New Mexico Petroleum Recovery Research Center

Omer M. Gurpinar
Technical Director, Enhanced Oil Recovery, Schlumberger

A.G. Guzman-Garcia
Engineer Advisor, ExxonMobil

Cam Matthews
Director, New Technology Ventures, C-FER Technologies

Greg Horton,
Consultant

John Hudson
Senior Production Engineer, Shell

Morten Iversen
Completion Team Leader, BG Group

John Macpherson,
Senior Technical Advisor, Baker Hughes

Cam Matthews
Director, New Technology Ventures, C-FER Technologies

Casey McDonough
Drilling Engineer, Chesapeake Energy

Badrul H. Mohamed Jan
Lecturer/Researcher, University of Malaya

Lee Morgenthaler,
Staff Production Chemist, Shell

D. Michael Kuck
Senior Advisor, BP plc

Leonard Kalfayan
Global Production Engineering Advisor, Hess Corporation

Zillur Rahim, Senior Petroleum Engineering Consultant, Saudi Aramco

D. Michael Kuck
Senior Advisor, BP plc

Tom Kelly
Systems Engineering, FMC Technologies

Lee Morgenthaler,
Staff Production Chemist, Shell

Pat York
Global Director, Well Engineering & Project Management, Weatherford International

Sally A. Thomas
Director, Minerva Engineering

Win Thornton
Global Projects Organization, BP plc

Mike Weatherl
Deepwater Engineering Consultant, Well Integrity, LLC

Rodney Wetzel
Team Lead, Sandface Completions, Chevron ETC

Scott Wilson
Senior Vice President, Ryder Scott Company

Jonathan Wylde
Global Head Technology, Clariant Oil Services

Sally A. Thomas
Principal Engineer, Production Technology, ConocoPhillips

Xiuli Wang
Director, Minerva Engineering

Mike Weatherl
Deepwater Engineering Consultant, Well Integrity, LLC

Rodney Wetzel
Team Lead, Sandface Completions, Chevron ETC

Scott Wilson
Senior Vice President, Ryder Scott Company

Jonathan Wylde
Global Head Technology, Clariant Oil Services

Pat York
Global Director, Well Engineering & Project Management, Weatherford International
Increase production and manage inflow with real-time information and control in every zone.

With patented inductive coupler technology that provides power and telemetry, the Manara* production and reservoir management system can be deployed in conventional or extended-reach wells, in two or more sections, or across any number of lateral junctions—all with a single control line. Using the Manara system to monitor and control previously unattainable zones, operators can now immediately identify problematic areas, pinpoint the cause, and make the necessary adjustments to maintain the well at optimal production.

Find out more at slb.com/manara
ILLUSION® PLUGS DISSOLVE...

THE SAVINGS STAY.

COMPLETE WITH THE LEADER.

Significantly reduce time to first production.

Introducing the industry’s first fully dissolvable frac plug. As it dissolves completely, so do your completion concerns, such as delays to first production, additional water usage, and the cost and risk of plug removal. Other companies make dissolvability claims, but they end up with large pieces left in the well or restricted ID. Our Illusion® frac plug, with its 10K psi rating, dissolves fully; you never spend time milling out composite plugs or delaying production. It’s one more way we improve your well’s ROI when you complete with the leader—Halliburton.

To learn more, visit us at halliburton.com/Complete1/Illusion

© 2015 Halliburton. All rights reserved.