Targeting MHC Regulation Using Polycyclic Polyprenylated Acylphloroglucinols Isolated from *Garcinia bancana*

Chloé Coste 1,2, Nathalie Gérard 1, Chau Phi Dinh 2, Antoine Bruguière 2, Caroline Rouger 2,†, Sow Tein Leong 3, Khalijah Awang 3, Pascal Richomme 2, Séverine Derbré 2,*,‡ and Béatrice Charreau 1,*,‡

1 Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France; chloe.coste@agrocampus-ouest.fr (C.C.); Nathalie.Gerard@univ-nantes.fr (N.G.)
2 SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, CEDEX 01, 49045 Angers, France; chauphi.dinh@univ-angers.fr (C.P.D.); antoine.bruguiere@outlook.com (A.B.); caroline.rouger@u-bordeaux.fr (C.R.); pascal.richomme@univ-angers.fr (P.R.)
3 Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; sowtein@hotmail.com (S.T.L.); khalijah@um.edu.my (K.A.)
* Correspondence: severine.derbre@univ-angers.fr (S.D.); Beatrice.Charreau@univ-nantes.fr (B.C.); Tel.: +33-249-180-440 (S.D.); +33-240-087-416 (B.C.); Fax: +33-240-087-411 (B.C.)
† Current address: Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France.
‡ Both last authors contributed equally to the work as senior authors.

Received: 4 August 2020; Accepted: 28 August 2020; Published: 2 September 2020

Abstract: Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on *Garcinia* species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from *Garcinia bancana*, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1–4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1–4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from *Garcinia bancana* with potential immunoregulatory properties.

Keywords: endothelium; Clusiaceae; *Garcinia bancana*; guttiferone F; guttiferone J; major histocompatibility complex; HLA-E; polycyclic polyprenylated acylphloroglucinols; xanthochymol; histone acetyltransferase