Target blood pressure and control status in Asia

Yook-Chin Chia MBBS, MRCP, FRCP1,2 | Kazuomi Kario MD, PhD3 | Yuda Turana MD, PhD4 | Jennifer Nailes MD, MSPH5 | Jam Chin Tay MBBS, FAMS6 | Saulat Siddique MBBS, MRCP, FRCP7 | Sungha Park MD, PhD8 | Jinho Shin MD9 | Peera Buranakitjaroen MD, MSc, DPhil10 | Chen-Huan Chen MD11 | Romeo Divinagracia MD, MHSA5 | Satoshi Hoshide MD, PhD3 | Huynh Van Minh MD, PhD12 | Jorge Sison MD13 | Arieksa Ann Soenarta MD14 | Guru Prasad Sogunuru MD, DM15,16 | Apichard Sukonthasarn MD17 | Boon Wee Teo MB, BCh18 | Narsingh Verma MD19 | Yuqing Zhang MD20 | Tzung-Dau Wang MD, PhD21 | Ji-Guang Wang MD, PhD22

1Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Bandar Sunway, Malaysia
2Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
3Division of Cardiovascular Medicine, Department of Cardiology, Jichi Medical University School of Medicine, Tochigi, Japan
4Department of Neurology, Faculty of Medicine, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
5University of the East Ramon Magsaysay Memorial Medical Center Inc, Quezon City, Philippines
6Department of General Medicine, Tan Tock Seng Hospital, Singapore City, Singapore
7Fatima Memorial Hospital, Lahore, Pakistan
8Division of Cardiology, Cardiovascular Hospital, Yonsei Health System, Seoul, Korea
9Faculty of Cardiology Service, Hanyang University Medical Center, Seoul, Korea
10Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
11Department of Medicine, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
12Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
13Department of Medicine, Medical Center Manila, Manila, Philippines
14Department Cardiology and Vascular Medicine, University of Indonesia-National Cardiovascular Center, Harapan Kita, Jakarta, Indonesia
15MIOT International Hospital, Chennai, India
16College of Medical Sciences, Kathmandu University, Bharatpur, Nepal
17Bangkok Hospital Chiang Mai, Chiang Mai, Thailand
18Division of Nephrology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
19Department of Physiology, Faculty of Medicine, King George’s Medical University, Lucknow, India
20Divisions of Hypertension and Heart Failure, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
21Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
22Department of Hypertension, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Abstract

It is widely accepted that hypertension constitutes a significant cardiovascular risk factor and that treating high blood pressure (BP) effectively reduces cardiovascular risk. An important issue in Asia is not just the high prevalence of hypertension, particularly in some countries, but also the low level of awareness and treatment rates in many...
Elevated blood pressure (BP) has been irrefutably shown to be associated with cardiovascular mortality and morbidity. Furthermore, there is definitive evidence to show that treatment of elevated BP is highly effective. The big challenge now is to identify and define the BP threshold at which clinically relevant hypertension should be diagnosed and BP targets during treatment.

For the past quarter of a century, the diagnosis of hypertension in adults has been based on systolic BP (SBP) ≥140 mm Hg and/or diastolic BP (DBP) ≥90 mm Hg. These thresholds were chosen arbitrarily and have been in use since 1993 when the new classification of hypertension was introduced by the Fifth Joint National Committee on the Detection, Evaluation and Treatment of High Blood Pressure (JNC5). This report changed the way hypertension was diagnosed, moving from a diagnosis based on DBP in earlier JNC reports, to one based on both SBP and DBP.1–2

The JNC committee was recently replaced by a team of several medical societies led by the American College of Cardiology (ACC) and the American Heart Association (AHA). In November 2017, these organizations introduced another change in the threshold for diagnosing hypertension and the treatment target, reducing it by 10 mm Hg to a BP of ≥130/80 mm Hg.3 This new lower BP threshold has caused a lot of ongoing debate, not only in the United States but also throughout the world.4–6

2 | RECOMMENDED DIAGNOSTIC BP THRESHOLD AND TARGET BP IN ASIA

After the publication of the ACC/AHA guidelines, many countries reviewed and updated their own national guidelines. The European guidelines,7 released in August 2018, retained a diagnostic BP threshold of ≥140/90 mm Hg, as did almost all countries/regions in Asia. Thus, although BP thresholds for the diagnosis of hypertension are relatively consistent across Asia (Table 1), some countries/regions recommend a lower threshold for defining BP control (<130/80 mm Hg), consistent with the European and US guidelines.3,7 In contrast to the US guidelines, which recommend the same BP target for all patients with hypertension, regardless of comorbidities, many Asian countries/regions recommend different target BP depending on the comorbidity and risk profile. In addition, there is variation between countries/regions in the target recommendations for patients with the same comorbidity (Table 1).

3 | BP CONTROL STATUS IN ASIA

An important issue in Asia is not just the high prevalence of hypertension, particularly in some countries/regions, but also the low level of awareness and treatment rates in many regions, as previously reported (Table 2).8 A study done by the HOPE Asia Network was the first to investigate current home BP control status in eleven different Asian countries/regions using standardized home BP measurements taken with the same validated home BP monitoring device with data memory.9 The results showed that BP control based on office BP of <140/90 mm Hg and a home BP of <135/85 mm Hg can be achieved by a relatively high proportion of specialist centers in Asia.10 However, there was extremely wide variation between control rates achieved in different regions, from 70% in Taiwan to only 5.5% in Pakistan. Furthermore, the effect of lowering diagnostic and therapeutic thresholds to levels recommended in the 2017 ACC/AHA guidelines differed by country/region (Tables 3 and 4).
<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Diagnostic threshold (mm Hg)</th>
<th>Control rate (%)</th>
<th>Control rate (mm Hg)</th>
<th>CAD</th>
<th>CVA</th>
<th>Elderly</th>
<th>Control rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia</td>
<td>2018</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥140/90 if proteinuria < 1 g/24 h</td>
<td></td>
<td></td>
<td><140/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥140/80 if >1 g/24 h</td>
<td></td>
<td></td>
<td>≥130/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if eGFR > 20 mL/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><130/80 if proteinuria < 1 g/24 h</td>
<td></td>
<td></td>
<td><140/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if eGFR > 20 mL/min</td>
<td></td>
<td></td>
<td>≥130/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>2018</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥140/90 if tolerated</td>
<td></td>
<td></td>
<td><140/80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>2013</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>2018</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>2019</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>2019</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>2018</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>2018</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>2013</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>2015</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>2015</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>2018</td>
<td>≥140/90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: +ve, positive; −ve, negative; 1°, primary; 2°, secondary; BP, blood pressure; CAD, coronary artery disease; CKD, chronic kidney disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; h, hours; MMM17, May Measurement Month 2017; NA, not applicable; OBP, office blood pressure; pr, prevention; UAOBP, unattended out-of-office blood pressure; y, years.

*a*Proteinuria defined as urinary protein ≥15 g per gram of creatinine.
IMPLICATIONS

Adopting a lower BP threshold will mean a higher prevalence of hypertension and even worse control rates of hypertension in much of Asia. While the debate on the threshold and treatment target is still ongoing, several Asia-specific hypertension features have to be considered. Some of these features can be summarized as follows. Stroke is a more common complication of hypertension than coronary artery disease in many Asian countries/regions.11 The association between higher SBP and cardiovascular events is steeper in Asians vs Caucasians.12 Asians are likely to develop high BP even in the presence of mild obesity,13 Many countries/regions in Asia have a high population intake of salt and show increased salt sensitivity.14,15 There are also common hypertension phenotypes in Asia, characterized by morning BP surge, nocturnal hypertension and greater BP variability.16–21

Based on all these differences between Asians and Caucasians, is there any merit in recommending and adopting the lower BP threshold for diagnosis and treatment target in Asia? Although the cardiovascular risk profile of Asian patients with hypertension means that it makes theoretical sense to lower diagnostic and therapeutic BP thresholds, there are currently no data from robust randomized clinical trials for the benefits of the lower targets in preventing cardiovascular disease (CVD) and reducing cardiovascular risk, particularly in high-risk patients and especially not in Asian populations.5 This was the rationale cited by a number of Asian countries for leaving current guidelines unchanged for the time being. There is also concern about lowering the clinic BP treatment target down to 130/80 mm Hg because there is no evidence regarding the equivalent home BP, which could result in some well-controlled patients being undertreated.

Singapore clinicians became uncertain about what was the correct thing to do after release of the 2017 ACC/AHA guidelines,3 both about the diagnostic threshold (≥140/90 or ≥130/80 mm Hg) and about whether to lower BP to <140/90 or <130/80 mm Hg for specific patient groups. Many clinicians were concerned about lowering BP to <130/80 mm Hg, especially in elderly patients with low DBP. In Japan, the results of a survey of Nikkei Online physician members in August 2018 showed that 58% thought the treatment target for adults without complications should remain at <140/90 mm Hg while 32% thought that it should be changed to <130/80 mm Hg.22

Overall, Asian experts from the HOPE Asia Network refer to the step-by-step approach to BP lowering and targets recommended by an Asian consensus23 as the current best approach in the region. The three-step approach is to lower morning home SBP to 145 mm Hg (first step) then to 130 mm Hg (second step) and to 125 mm Hg (third step). This is consistent with Asian data from the Japan Morning Surge-Home Blood Pressure (J-HOP) and Home blood pressure measurement with Olmesartan Naive patients to Establish Standard Target blood pressure (HONEST) studies indicating that morning home BP should be controlled to at least <145 mm Hg to reduce the risk of cardiovascular events24–27 and that achieving a SBP <125 mm Hg should reduce the CVD event rate even further.

5 | CONCLUSIONS

Hypertension awareness and control is poor in most Asian countries/regions, even when defined using the higher BP threshold of ≥140/90 mm Hg. While treating BP at lower levels and getting to lower targets may be beneficial to many Asians patients, who are at higher cardiovascular risk compared with Caucasians, there is still
CHIA et al.

Increasing awareness of elevated BP, reducing obesity, and salt intake is far more important than debating over whether BP should be lowered to <130/80 mm Hg when even getting to a BP of <140/90 mm Hg is achieved only for a few treated individuals. Once a BP of <140/90 mm Hg is achieved then fine tuning can be done to try and achieve the lower target of <130/80 mm Hg. If this is tolerated and the risk profile of each individual patient. Furthermore, studies on treating at lower BP threshold level in Asians and getting to lower BP targets will be very useful for informing and optimizing the management of hypertension in the region.

TABLE 4

<table>
<thead>
<tr>
<th>Country</th>
<th>Conventional threshold SBP</th>
<th>Morning home SBP</th>
<th>ACC/AHA 2017 threshold SBP</th>
<th>Morning home SBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>64</td>
<td>70</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>India</td>
<td>69</td>
<td>73</td>
<td>72</td>
<td>75</td>
</tr>
<tr>
<td>Indonesia</td>
<td>43</td>
<td>48</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>Japan</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>Korea</td>
<td>65</td>
<td>71</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Pakistan</td>
<td>65</td>
<td>72</td>
<td>67</td>
<td>70</td>
</tr>
<tr>
<td>Philippines</td>
<td>65</td>
<td>71</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Singapore</td>
<td>65</td>
<td>71</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Thailand</td>
<td>65</td>
<td>71</td>
<td>69</td>
<td>71</td>
</tr>
</tbody>
</table>

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association.

CONFLICT OF INTEREST

CH Chen has received honoraria for serving as a speaker or member of advisory boards for AstraZeneca, Bayer AG, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Merck & Co, Novartis, Pfizer, Sanofi, Servier, and Takeda. YC Chia has received honoraria for speaking engagements as a speaker or advisor for Abbott, Bayer, Boehringer Ingelheim, Merck, MSD, Novartis, Pfizer, Roche, Schering-Plough, Sanofi, Servier, and Takeda. YC Chia has received research grants from MSD, Boehringer Ingelheim. CH Chen has received research grants from MSD, Boehringer Ingelheim, Daiichi Sankyo, EA Pharma, Fukuoka Dentsu, Medtronic, Mitsubishi Tanabe Pharma Corporation, Menarini Pharmaceutical Ltd, and Takeda Pharmaceutical Co.

ACKNOWLEDGMENTS

English language editing assistance was provided by Nicola Ryan, an independent medical writer funded by the HOPE Asia Network.

TABLE 3

<table>
<thead>
<tr>
<th>Country</th>
<th>Well-controlled <140/90 mm Hg</th>
<th>Well-controlled <130/80 mm Hg</th>
<th>Sustained (uncontrolled) <140/90 mm Hg</th>
<th>Sustained (uncontrolled) <130/80 mm Hg</th>
<th>White coat (uncontrolled) <140/90 mm Hg</th>
<th>White coat (uncontrolled) <130/80 mm Hg</th>
<th>Masked (uncontrolled) <140/90 mm Hg</th>
<th>Masked (uncontrolled) <130/80 mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>35</td>
<td>29</td>
<td>24</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>India</td>
<td>52</td>
<td>54</td>
<td>28</td>
<td>25</td>
<td>28</td>
<td>16</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Indonesia</td>
<td>23</td>
<td>54</td>
<td>13</td>
<td>37</td>
<td>22</td>
<td>39</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>Japan</td>
<td>36</td>
<td>39</td>
<td>20</td>
<td>39</td>
<td>22</td>
<td>32</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Korea</td>
<td>36</td>
<td>30</td>
<td>22</td>
<td>32</td>
<td>22</td>
<td>31</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Malaysia</td>
<td>37</td>
<td>15</td>
<td>42</td>
<td>33</td>
<td>42</td>
<td>33</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Pakistan</td>
<td>55</td>
<td>17</td>
<td>17</td>
<td>30</td>
<td>17</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Philippines</td>
<td>62</td>
<td>13</td>
<td>18</td>
<td>37</td>
<td>18</td>
<td>31</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Singapore</td>
<td>30</td>
<td>34</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>29</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Taiwan</td>
<td>52</td>
<td>12</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Thailand</td>
<td>61</td>
<td>10</td>
<td>17</td>
<td>26</td>
<td>17</td>
<td>37</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association.
Co., Omron Healthcare, Otsuka, Pfizer, Takeda, and Teijin Pharma; and honoraria from Daichii Sanky, Omron Healthcare and Takeda. JM Nailles has received speaker’s honorarium from Pfizer, and was given investigator initiated research grants from Pfizer. S Park has received honoraria from Astellas and Pfizer; and consultation fees from Takeda. S Siddique has received honoraria from Bayer, Pfizer, ICI, and Servier; and travel, accommodation and conference registration support from Atco Pharmaceutical, Highnoon Laboratories, Horizon Pharma, ICI, Hilton Pharma, CCL and Pfizer. GP Sogunuru has received a research grant related to hypertension monitoring and treatment from Pfizer. All other authors report no potential conflict of interest in relation to this article.

AUTHOR CONTRIBUTIONS

YC Chia and Kazoumi K conceptualized the topic of this manuscript. YC Chia contributed the contents and wrote the entire manuscript. All other authors read, edited, and approved the manuscript.

ORCID

Yeok-Chin Chia https://orcid.org/0000-0003-1995-0359
Kazoumi Kario https://orcid.org/0000-0002-8251-4480
Saulat Siddique https://orcid.org/0000-0003-1294-0430
Jinho Shin https://orcid.org/0000-0001-6706-6504
Peera Buranakitjaroen https://orcid.org/0000-0002-4710-2413
Satoshi Hoshide https://orcid.org/0000-0001-7541-5751
Boon Wee Teo https://orcid.org/0000-0002-4911-8507
Ji-Guang Wang https://orcid.org/0000-0001-8511-1524

REFERENCES
