Investigation of possible rickettsial infection in patients with malaria

Tay, S.T.¹, Kho, K.L.¹, Vythilingam, I.², Ooi, C.H.³ and Lau, Y.L.²
¹Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
²Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
³Vector Borne Diseases Section, Sarawak Health Department, Ministry of Health Malaysia
*Corresponding author e-mail: tayst@um.edu.my (Sun Tee Tay)
Received 2 October 2018; received in revised form 17 December 2018; accepted 18 December 2018

Abstract. Rickettsioses are a common health problem in many geographical areas, including rural areas in Southeast Asia. Co-infection of rickettsioses and malaria has been reported in Africa, where common reservoir and vectors are available. In this study, blood samples of Malaysian patients microscopically positive (n=148) and negative (n=88) for malaria parasites (Plasmodium knowlesi, Plasmodium malariae, Plasmodium falciparum, and Plasmodium vivax) were screened for the presence of rickettsial DNA, using PCR assays targeting specific genes. A partial fragment of rickettsial ompB gene was successfully amplified and sequenced from a patient microscopically positive for Plasmodium spp. and PCR-positive for P. vivax. BLAST analysis of the ompB sequence demonstrated the highest sequence similarity (99.7% similarity, 408/409nt) with Rickettsia sp. RF2125 (Genbank accession no. JX183538) and 91.4% (374/409 nt) similarity with Rickettsia felis URRWXCal2 (Genbank accession no. CP000053). This study reports rickettsial infection in a malaria patient for the first time in the Southeast Asia region.

INTRODUCTION

Rickettsia felis (type strain URRWXCal2) is an emergent human pathogen which causes febrile illnesses in various parts of the world (Parola et al., 2016). The infection has been detected more often in countries with high malaria rates whereby common reservoirs (mammals) and arthropod vectors are available, as compared with countries with low malaria rates (Mediannikov et al., 2013). Co-infection of R. felis and Plasmodium spp. has been reported in malaria patients in Senegal and Gabon, Arica (Maina et al., 2012; Mediannikov et al., 2013; Mourembou et al., 2015). It has been recently reported that Anopheles gambiae mosquitoes, the primary malarial vector in sub-Saharan Africa, may be able to transmit R. felis (Dieme et al., 2015). Rickettsial DNA has been detected in An. gambiae and Aedes albopictus mosquitoes in Africa (Socolovschi et al., 2012a, b), as well as Culex pipiens pallens and Anopheles sinensis mosquitoes in China (Zhang et al., 2014).

Besides R. felis, genetically closely related organisms such as Rickettsia sp. RF2125, Rf31, Rickettsia asemboensis, and Candidatus Rickettsia senegalensis (collectively known as R. felis-like organisms) have also been reported from different arthropod vectors from various geographical regions. The uncultured Rickettsia sp. RF2125 was first detected in Ctenocephalides canis and Ctenocephalides felis near the Myanmar border, Thailand (Parola et al., 2003), and has since then, detected in various arthropods species (Tay et al., 2014; Hii et al., 2015; Kho et al., 2017).

Rickettsia sp. RF2125 DNA has been detected more often from arthropods such as fleas and ticks parasitizing domestic and pet animals in Malaysia, as compared
to \textit{R. felis} (Kho \textit{et al.}, 2017). \textit{Rickettsia} sp. RF2125 has also been detected from the blood samples of monkeys and a febrile patient in our previous investigations (Tay \textit{et al.}, 2015; Kho \textit{et al.}, 2016). As malaria and rickettsioses have been known as major causes of fever in rural Malaysia (Tay \textit{et al.}, 2000; Kaur, 2009), this has led us to investigate the occurrence of rickettsial infection in patients clinically diagnosed as having malaria. Additionally, the presence of rickettsiae in \textit{Ae. albopictus} and \textit{Culex quinquefasciatus} mosquitoes was also investigated in this study.

**MATERIALS AND METHODS**

**Blood samples**

A total of 236 blood samples obtained from patients attending to several health centres in East and West Malaysia from 2015-2017 were investigated in this study. These include patients who were microscopically positive (n=148) and negative (n= 88) for \textit{Plasmodium} spp. Ethical approval was obtained from the University of Malaya Medical Centre Ethic Committee (MEC No. 817.18). The laboratory diagnosis of malaria was based on either examination of Wright-Giemsa stained peripheral blood smears and/or a nested PCR assay targeting 18S rRNA gene (Snounou \textit{et al.}, 1993). DNA was extracted from the blood samples using a commercial kit (Qiagen DNeasy Blood \\& Tissue Kit, Germany). Additionally, DNA extracts obtained from 165 \textit{Ae. albopictus} collected around Selangor and Kuala Lumpur and \textit{Culex quinquefasciatus} collected from several locations (Kuala Terengganu, Malacca, Johore, Selangor, Pahang, Penang, Kelantan, Kuala Lumpur, Negeri Sembilan, Kedah, Perlis, Perak, Sabawak, and Sabah) were subjected for screening of rickettsial DNA.

**PCR amplification**

Three rickettsial-specific genes i.e., citrate synthase gene (\textit{gltA}) (Labruna \textit{et al.}, 2004), 190-kDa outer membrane protein gene (\textit{ompA}) (Regnery \textit{et al.}, 1991) and 135-kDa outer membrane protein gene (\textit{ompB}) (Roux \\& Raoult, 2000) were targeted for amplification from the blood and mosquito DNA samples. All PCR assays were performed in a final volume of 20 µL containing 2 µL of DNA template, 1X ExPrime Taq DNA polymerase (GENET BIO, South Korea) and 0.2 µM of each primer, in a Veriti thermal cycler (Applied Biosystems, USA). Cloned PCR4-TOPO TA plasmids (Invitrogen, Carlsbad, CA, USA) with amplified \textit{gltA} fragment from \textit{R. honei} (strain TT118) and \textit{ompB} fragment from a rickettsial endosymbiont (98% similarity to \textit{R. raoultii}) were used as positive controls. Sterile distilled water was used as the negative control in each PCR reaction. PCR products (5 µl) were separated on a 1.5% (w/v) agarose gel (FirstBase Laboratories, Malaysia) and purified using GeneAll Expin™Combo GP kit (GeneAll Biotechnology, South Korea) prior to sequencing on an ABI PRISM 377 Genetic Analyzer (Applied Biosystems, USA), using both forward and reverse PCR primers. The sequence obtained was subjected to BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to search for homologous sequences in the GenBank database. The genetic relatedness of the rickettsial strain with other \textit{R. felis} reference strains was determined by constructing a dendrogram using neighbour-joining method of the MEGA software and bootstrap analysis with 1,000 re-samplings (Tamura \textit{et al.}, 2013). \textit{Rickettsia rickettsii ompB} gene sequence (X16353) was used as an outgroup for comparison.

**RESULTS**

The amplification of rickettsial \textit{gltA} and \textit{ompA} genes was negative for all patients’ blood DNA samples. An \textit{ompB} gene fragment was successfully amplified from the blood sample of a patient (SBH0005) microscopically positive for \textit{Plasmodium} spp. (\textit{P. malariae/ P. knowlesi}), but was positive for \textit{P. vivax} in the nested PCR assay (Snounou \textit{et al.}, 1993). Comparative analysis of 409 nucleotides of the amplified
The *ompB* gene (Table 1) demonstrates the highest similarity (99.7%, 408/409 nt) with a rickettsial strain from a Malaysian patient (*Rickettsia* sp. clone Mal, Genbank accession no. KU255717), and monkey (*Rickettsia* sp. 0095, Genbank accession no. KP126804), as well as *Rickettsia* sp. RF2125 (Genbank accession no. JX183538). The sequence demonstrates 99.5% (407/409 nt) similarity with *Rickettsia asemboensis* isolate F30, CF#22, and VGD7 (Genbank accession nos. JN315972, KY445737, KY650699), 91.4% with *Rickettsia felis* URRWXCa2 (Genbank accession no. CP000053) and 88.7% with *Rickettsia* sp. clone HL15c (Genbank accession no. KF963608) from Malaysia and *Candidatus Rickettsia senegalensis* strain PU01-02 (Genbank accession no. KP666470) from Africa. Figure 1 is a dendrogram showing the closely relatedness of the rickettsial strain (SBH0005) detected in this study with *Rickettsia* sp. RF2125 and other rickettsial species, based on *ompB* partial gene sequences. None of the mosquito DNA (*Ae. albopictus* and *Culex quinquefasciatus*) screened in this study was positive for rickettsial DNA.

Table 1. Percentage sequence similarity of rickettsial *ompB* partial gene sequence (SBH0005) with *R. felis* and its genetically closely related species

<table>
<thead>
<tr>
<th><em>Rickettsia</em> species (sequence length)</th>
<th>SBH0005 (409 nt)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Rickettsia</em> sp. RF2125 (JX183538) (409 nt)</td>
<td>99.7</td>
</tr>
<tr>
<td><em>Rickettsia</em> sp. 0095 (KP126804) (409 nt)</td>
<td>99.7</td>
</tr>
<tr>
<td>Uncultured <em>Rickettsia</em> sp. clone Mal (KU255717) (409 nt)</td>
<td>99.7</td>
</tr>
<tr>
<td><em>Rickettsia asemboensis</em> isolate F30 (JN315972) (409 nt)</td>
<td>99.5</td>
</tr>
<tr>
<td><em>Rickettsia asemboensis</em> isolate CF#22 (KY445737) (409 nt)</td>
<td>99.5</td>
</tr>
<tr>
<td><em>Rickettsia asemboensis</em> isolate VGD7 (KY650699) (409 nt)</td>
<td>99.5</td>
</tr>
<tr>
<td><em>Rickettsia felis</em> URRWXCa2 (CP000053) (409 nt)</td>
<td>91.4</td>
</tr>
<tr>
<td><em>Candidatus Rickettsia senegalensis</em> strain PU01-02 (KF666470) (418 nt)</td>
<td>88.7</td>
</tr>
<tr>
<td>Uncultured <em>Rickettsia</em> sp. clone HL15c (KF963608) (418 nt)</td>
<td>88.7</td>
</tr>
<tr>
<td><em>R. rickettsii</em> (X16353) (418 nt)</td>
<td>85.8</td>
</tr>
</tbody>
</table>

Figure 1. Dendrogram showing the closely relatedness of rickettsial species based on *ompB* partial gene sequences. The sequence (SBH0005) was clustered in the same group with *Rickettsia* sp. RF2125.
DISCUSSION

*R. felis* DNA has been detected in approx. 40% of febrile children in the rural area of Gabon, Africa (Mourembou *et al.*, 2015). The most common clinical manifestations of *R. felis* infection in these patients, i.e., fever, headaches, chills, muscle aches and joint pains (Maina *et al.*, 2012) can often be misdiagnosed for other tropical diseases including malaria, dengue and other vector-borne diseases. The first report of *R. felis* infection has been reported amongst rural residents of the central Thai-Myanmar border (Parola *et al.*, 2003), since then, the infection has been diagnosed in febrile patients from several Asian countries, including Korea (Choi *et al.*, 2005), Thailand (Sophie *et al.*, 2014), Laos (Dittrich *et al.*, 2014) and China (Zhang *et al.*, 2014). Although direct evidence of *R. felis* infection has not been obtained in Malaysia, significantly higher seroprevalence to *R. felis* has been reported among rural populations (indigenous population, 22.5% and animal farm workers, 16.5%) as compared to urban blood donors (0%) (Kho *et al.*, 2017).

This study reports the detection of a rickettsial strain genetically closely related to *R. felis* in a malaria patient from East Malaysia (Sabah) presenting with fever and chills. Although the patient was microscopically positive for *P. malariae/P. knowlesi* infection, *P. vivax* was detected from the patient’s blood sample. The species misidentification of malaria parasites by microscopy is not uncommon and has been reported in malaria patients especially those infected with *P. vivax, P. falciparum* and *P. knowlesi* (Barber *et al.*, 2013). The *Rickettsia* sp. detected in this study had the highest sequence similarity with the *ompB* gene of *Rickettsia* sp. RF2125, which has been previously detected in monkeys, fleas and ticks (Tay *et al.*, 2014; Kho *et al.*, 2017), as well as in a Malaysian patient with persistent fever, conjunctival suffusion, petechiae, low platelet count, elevated hepatic transaminases, and hypoalbuminemia (Kho *et al.*, 2016). As different antimicrobials are used for treatment of malaria and rickettsioses, co-infection of *Plasmodium* and *Rickettsia* spp. may contribute to “clinical resistance” if malaria drug is used alone. In fact, clinical resistance to chloroquine in *P. vivax* infection has been reported in Indonesia (Maguire *et al.*, 2002; Asih *et al.*, 2011). This study highlights the importance of awareness and the availability for appropriate laboratory diagnostic tests for rickettsial infections and other tropical diseases in malaria endemic regions.

*R. felis* has been postulated as a pathogen with a global impact based on the fact that mosquitoes can act as a vector for rickettsioses (Parola, 2016; Dieme *et al.*, 2015; Socolovschi *et al.*, 2012a, b). *A. albopictus* mosquitoes (also native in Southeast Asia) from Gabon, Africa and *Culex pipiens* mosquitoes from China were tested positive for *R. felis* in previous investigations (Angelakis *et al.*, 2016; Zhang *et al.*, 2014). However, none of the *A. albopictus* and *Culex* mosquitoes screened in this study were positive for rickettsial DNA. This may be owing to the small number and limited species of mosquitoes investigated in this study or seasonal variation, as seen in mosquitoes infected with *Rickettsia* (Mediannikov *et al.*, 2013) and dengue virus (Angel *et al.*, 2008). The finding on co-infection of *R. felis* and *Plasmodium* spp. in malaria patients in Africa (Maina *et al.*, 2012; Mediannikov *et al.*, 2013; Mourembou *et al.*, 2015) suggests that *R. felis* infection should be included in the differential diagnosis in malaria endemic areas, especially when there are shared reservoirs (mammals) and arthropod vectors. The overall incidence of rickettsial infection in malaria patients has been low in this study. It is also possible for patients to acquire multiple infections through simultaneous exposure to various infected arthropod vectors including mosquitoes, fleas and ticks in the tropical region. Further studies are required to identify common reservoirs and arthropod vectors for both *Rickettsia* and *Plasmodium* spp. and to investigate the clinical impact and management of co-infection.
Acknowledgments. This study was funded by Ministry of Science, Technology and Innovation E-Science Fund (SF014-2015), and High Impact Research Chancellery Grant UM.C/625/1/HIR/CHAN/11). We acknowledge the technical assistance provided by Ms Koh Fui Xian.

REFERENCES


