Brief communication

Evaluation of novel Parkinson’s disease candidate genes in the Chinese population

Elaine Guo Yan Chew a, Herty Lianya, Louis C.S. Tan b,c, Wing-Lok Au b, Kumar-M. Prakash b, Azlina Ahmad Annuard d, Anne Y.Y. Chan e, Shen-Yang Lim f, Vincent Moke, Sun Ju Chung g, Kyuyoung Song h, Jianjun Liu a, Jia Nee Foo a,i, Eng-King Tan b,c,*

a Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
b Department of Neurology, National Neuroscience Institute, Singapore, Singapore
c Duke-National University of Singapore Medical School, Singapore, Singapore
d Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
e Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Gerald Choa Neuroscience Centre, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
f Division of Neurology, Department of Medicine, and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
h Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
i Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Ulsan, Korea
j Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

A R T I C L E I N F O

Article history:
Received 4 June 2018
Received in revised form 11 September 2018
Accepted 11 September 2018

Keywords:
Parkinson’s disease
Genetics
Chinese population

A B S T R A C T

Recent whole-exome sequencing studies in European patients with Parkinson’s disease (PD) have identified potential risk variants across 33 novel PD candidate genes. We aim to determine if these reported candidate genes are similarly implicated in Asians by assessing common, rare, and novel non-synonymous coding variants by sequencing all 33 genes in 198 Chinese samples and genotyping coding variants in an independent set of 9756 Chinese samples. We carried out further targeted sequencing of CD36 in an additional 576 Chinese and Korean samples. We found that only 8 of 43 reported risk variants were polymorphic in our Chinese samples. We identified several heterozygotes for rare loss-of-function mutations, including the reported CD36 p.Gln74Ter variant, in both cases and controls. We also observed 2 potential compound heterozygotes among PD cases for rare loss-of-function mutations in CD36 and SSPO. The other reported variants were common in East Asians and not associated with PD, completely absent, or only found in controls. Therefore, the 33 reported candidate genes and associated variants are unlikely to confer significant PD risk in the East Asian population.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Two recent whole-exome sequencing (WES) studies in patients with Parkinson’s disease (PD) and controls of Finnish (Siitonen et al., 2017) and European (Jansen et al., 2017) descent have identified a total of 33 novel candidate genes for early-onset PD, containing either low-penetrance risk variants (Siitonen et al., 2017) or potentially high-penetrance recessive disease variants from mostly single observations of homozygotes or compound heterozygotes for loss-of-function (LoF) mutations (Jansen et al., 2017). It is unknown if these variants are present in the Asian population as well. A comparison of the allelic spectrum of these genes in Asian compared with European populations can provide insight into the pathogenicity of these variants and the genetic differences underlying PD in these populations.

2. Methods

We assessed if these 33 genes are implicated in PD risk in the Asian population through sequencing and genotyping of 9954 ethnic Chinese samples. Specifically, 9 of the 43 reported variants and 146 common nonsynonymous coding variants (minor allele

<table>
<thead>
<tr>
<th>Gene</th>
<th>HGVS nomenclature (Hg19)</th>
<th>Amino acid substitution a</th>
<th>Variant</th>
<th>gnomAD allele frequency</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Case</td>
<td>East Asian MAF All b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hetc Homo recd MAF All b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop-gain</td>
<td>CAPS2</td>
<td>p.Arg394Ter</td>
<td>rs201447508</td>
<td>5.80E-05 5.32E-05</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
<tr>
<td></td>
<td>CD36</td>
<td>p.Gln74Ter</td>
<td>rs545489204</td>
<td>0.00015 0.00074</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
<tr>
<td></td>
<td>MNS1</td>
<td>p.Ter496TrpextTer16</td>
<td>rs147344434</td>
<td>1.75E-05 0.00012</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
<tr>
<td></td>
<td>PTPRH</td>
<td>p.Tyr328Ter</td>
<td>rs775533113</td>
<td>2.5E-05 0.00035</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
<tr>
<td></td>
<td>SSPO</td>
<td>p.Arg2540Ter</td>
<td>rs138029458</td>
<td>0.00025 0.00236</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frameshift</td>
<td>ANKRD36</td>
<td>p.Arg1424GlnfsTer6</td>
<td>NA</td>
<td>0.0101 2 2 0</td>
<td>0.0152</td>
<td>2 1 1</td>
</tr>
<tr>
<td></td>
<td>ANKRD36</td>
<td>p.Arg1472LysfsTer3</td>
<td>NA</td>
<td>0.00252 0.03866</td>
<td>0.0404</td>
<td>8 8 0</td>
</tr>
<tr>
<td></td>
<td>CD36</td>
<td>p.Thr111SerfsTer22</td>
<td>rs572295823</td>
<td>0.00105 0.01514</td>
<td>0.0202</td>
<td>4 4 0</td>
</tr>
<tr>
<td></td>
<td>CD36</td>
<td>p.Arg1472LysfsTer3</td>
<td>NA</td>
<td>0.00252 0.03866</td>
<td>0.0404</td>
<td>8 8 0</td>
</tr>
<tr>
<td></td>
<td>PTPRH</td>
<td>p.Leu308MetfsTer7</td>
<td>rs111279560</td>
<td>1.66E-05 5.81E-5</td>
<td>0.0859</td>
<td>13 9 4</td>
</tr>
<tr>
<td></td>
<td>PTPRH</td>
<td>p.Gly1307ArgfsTer28</td>
<td>rs148676840</td>
<td>0.00052 0.00721</td>
<td>0.0303</td>
<td>6 6 0</td>
</tr>
<tr>
<td>Splice site</td>
<td>ANKRD36</td>
<td>p.Leu308MetfsTer7</td>
<td>rs111279560</td>
<td>1.66E-05 5.81E-5</td>
<td>0.0859</td>
<td>13 9 4</td>
</tr>
<tr>
<td></td>
<td>PZP</td>
<td>p.Glu445AspfsTer65</td>
<td>rs750173933</td>
<td>3.63E-05 0.00037</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
<tr>
<td></td>
<td>PZP</td>
<td>NA</td>
<td>NA</td>
<td>0.00101 2 2 0</td>
<td>0.0152</td>
<td>2 1 1</td>
</tr>
<tr>
<td></td>
<td>SSPO</td>
<td>p.Gly1082Ser</td>
<td>rs543893638</td>
<td>0.00013 0.00188</td>
<td>0.0051</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>

a Amino acids affected by frameshift mutation are indicated by positional range of amino acids.

b Number of case/control samples whose variant was identified.

c Number of case/control heterozygotes whose variant was identified.

d Number of case/control recessive homozygotes whose variant was identified.
frequency (MAF > 1%) were genotyped in 710 late-onset (≥55 years) Chinese PD cases and 9046 population controls, whereas rare and novel nonsynonymous coding variants (MAF ≤ 1%) were identified by WES of 99 patients with early-onset PD (<55 years) and 99 healthy elderly controls. CD36 targeted sequencing was conducted in another 576 Chinese and Korean samples (276 early-onset cases, 300 controls). These samples have previously been assessed for mutations/variants in established familial PD genes and other PD-associated genes (Foo et al., 2014). Patients were diagnosed with PD using the UK Brain Bank criteria. All patients and controls gave informed written consent, and the study was approved by the institutional ethics committee (Supplementary Methods).

3. Results and discussion

Of the 43 reported variants, only 10 were polymorphic in Exome Aggregation Consortium (ExAC) East Asians and 8 were polymorphic in our Chinese samples (Supplementary Table 1), underscoring the intrinsic difficulty of validating WES data across populations. Most of the reported low-penetrance risk variants (Siitonen et al., 2017) are rare in Europeans and absent in East Asians, with the exception of TASSR19 p.Lys126Gln that is common in East Asians (allele frequency ~12%) and not significantly associated with PD in our samples. Other common nonsynonymous coding variants observed within the reported genes also showed no association with PD (Supplementary Table 2). Among the reported high-penetrance risk variants (Jansen et al., 2017), 5 were common in East Asians, whereas the rare DIS3 and GAPJ2HL variants were found solely in controls (Supplementary Table 1). These variants are unlikely to be major PD risk factors in Chinese. The CD36 p.Gln74Ter variant, although not significantly enriched in cases, was present at higher frequencies in cases (0.51% early-onset and 0.28% late-onset cases) than in controls (0.18%).

From our WES data, rare nonsynonymous variants we identified across 31 candidate PD genes were not significantly enriched in cases or controls (Supplementary Table 3). We identified possible compound heterozygotes in 1/99 cases each for CD36 and SSPO (Supplementary Table 4). Further targeted sequencing of CD36 did not identify any additional compound heterozygotes or homozygotes for this or other variants in CD36 (Supplementary Table 5, Supplementary Fig. 1). This confirmed that, akin to the initial discovery European population (1/1148 early-onset PD cases) (Jansen et al., 2017), compound heterozygotes or homozygotes for LoF mutations in PD risk genes are similarly rare in early-onset Asian PD cases. We observed 23 predicted LoF variants, including 10 stop-gain, 9 frameshifts, and 4 splice site variants in 9 genes (Table 1). We observed 3 homozygotes for LoF variants among healthy controls, all of which appear to be low-frequency polymorphisms in East Asian populations and unlikely to play a major role in health and disease (Lek et al., 2016; MacArthur et al., 2012). The heterozygous LoF variants present only in cases but not controls are potential PD risk variants that require further validation.

In our current samples, we have 80% estimated power (α = 0.05) to identify genes with high-penetrant rare variants (Jansen et al., 2017) in at least 8% (8/99 cases, Supplementary Figure 2) and 0.43% (3/710 cases, Supplementary Fig. 3) of our early- and late-onset cases, respectively. We did not observe this occurrence of heterozygotes or homozygotes/compound heterozygotes in any of the 33 genes, suggesting they are unlikely to contribute significantly to PD risk in our Chinese patients. Although the rare reported variants were originally found in patients with early-onset PD (Jansen et al., 2017; Siitonen et al., 2017), we observed most of them at similar frequencies in our early- and late-onset PD samples, suggesting that age-related differences are unlikely.

Of note, the previous WES studies (Jansen et al., 2017; Siitonen et al., 2017) also did not observe significant enrichment of these extremely rare variants and encountered limitations in power to study these rare variants, with reported detection power (Siitonen et al., 2017) ranging from 5.3×10^{-7} to 1.4×10^{-4}. We estimate that at least 10,597 early-onset PD cases and controls are required for robust detection of the reported rare variants (80% power, α = 0.05; case:control = 1:1). Analyzing segregation in families may be an alternative to validate these rare variants in the Chinese population, although such families are limited for a late-onset disease such as PD. Ultimately, large international consortia need to be formed for meta-analyses across multiple sample collections.

It is possible that some of the reported novel rare PD variants are population-specific and thus were not detected at all in our Chinese PD samples. There are several examples of population-specific rare variants, including the PD pathogenic mutation LRRK2 p.Gly2019Ser (Kumari and Tan, 2009) and the Alzheimer’s disease risk variant TREM2 p.Arg47His (Huang et al., 2015), each of which is consistently associated with disease risk in Europeans and other populations but residuously absent in Asians across multiple studies. It is also possible that certain reported rare variants play a stronger role in early-onset PD as opposed to late-onset PD. However, for the majority of the reported rare variants interrogated in our samples, we observed similar frequencies of interrogated variants in our late-onset samples (710 PD cases with onset ≥55 years) as compared with our early-onset samples (99 PD cases with onset <55 years) (Supplementary Table 1).

Nonetheless, the identification of potential compound heterozygotes for mutations in CD36 and SSPO in additional PD cases provides support for their possible roles in PD pathogenesis. CD36 is known to have a role in malaria by mediating cytoadherence of Plasmodium falciparum—parasitized erythrocytes (Oquendo et al., 1989). Given that anti-malarial therapy has been previously observed to alleviate PD-associated dyskinesias in a rat model (Kim et al., 2015), this may represent an indirect potential functional link between CD36 and PD. The exact role of SSPO in PD pathogenicity is undetermined; however, SSPO is involved in neuronal survival (Monnerie et al., 1997) and aggregation (Gobron et al., 1996), neurite extension (Gobron et al., 2000), as well as fasciculation (Meinieil et al., 2003; Stanic et al., 2010).

4. Conclusion

In summary, the majority of reported PD risk genes and associated variants are either extremely rare or absent in our Chinese samples and thus unlikely to confer significant PD risk in the Chinese population. There are more than 1.5 billion Chinese globally, accounting for approximately 20% of the global population. Our findings in the Chinese population are therefore an important contribution to the literature for future reference and meta-analysis. Further sequencing in substantially larger data sets from diverse populations is required to determine if these recessive mutations are enriched in early-onset PD cases and/or have population-specific effects. Longitudinal evaluation of both patients and healthy controls who carry the reported and identified rare LoF variants, with clinical and neuroimaging assessments, will allow in vivo elucidation of their pathogenicity in humans.

Disclosure statement

The authors have no conflicts of interest to declare.

Acknowledgements

The authors thank colleagues at the Genome Institute of Singapore and National Neuroscience Institute who have contributed to this study.
This work is supported by the National Medical Research Council under the Singapore Translational Research Investigator Award (STaR; NMRC/STaR/014/2013 to E-KT) and Translational and Clinical Research Flagship Program in Parkinson’s disease (NMRC/TCR/013-NNI/2014), the Agency for Science, Technology and Research, Duke-NUS Graduate Medical School, and Singapore Millennium Foundation. JNF is a Singapore National Research Foundation fellow (NRF-NRF2016-03).

Data access

Data are available in Supplementary Material and upon request at https://www.nni.com.sg/research/research-platforms/Genomics/Pages/Home.aspx.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neurobiolaging.2018.09.013.

References

Tremblay, E.G.Y. Chew et al. / Neurobiology of Aging xxx (2018) 1.e1–1.e4