Current and Emerging Issues in Operations Management

Editors
Shamshul Bahri
Suhana Mohezar
Noor Ismawati Jaafar
Current and Emerging Issues in Operations Management

Editors:
Shamshul Bahri
Suhana Mohezar
Noor Ismawati Jaafar

Penerbit UMT
Universiti Malaysia Terengganu (UMT)
21030 Kuala Nerus
Terengganu
2018
Current and Emerging Issues in Operations Management

© 2018 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopy, recording or any information storage and retrieval system, without permission in writing from Director, Penerbit UMT, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

Hak Cipta Terpelihara © 2018. Tidak dibenarkan mengeluarkan ulang mana-mana bahagian artikel, ilustrasi dan isi kandungan buku ini dalam apa juga bentuk dan dengan apa cara sekalipun sama ada secara elektronik, fotokopi, mekanik, rakaman, atau cara lain sebelum mendapat izin bertulis daripada Pengarah, Penerbit UMT, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

Published in Malaysia by/Diterbitkan oleh
Penerbit UMT
Universiti Malaysia Terengganu
21030 Kuala Nerus
Terengganu

http://penerbit.umt.edu.my
Email: penerbitumt@umt.edu.my

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Shamshul Bahri
Current and Emerging Issues in Operations Management / Shamshul Bahri,
Suhana Mohezar, Noor Ismawati Jaafar.
ISBN 978-967-2200-26-0
I. Suhana Mohezar. II. Noor Ismawati Jaafar. III. Title.
658

Set in Optima

Design: Penerbit UMT
Layout: Penerbit UMT

Printed by:
Reka Cetak Sdn. Bhd.
No. 14, Jalan Jemuju Empat 16/13D
Seksyen 16
40200 Shah Alam
Selangor Darul Ehsan
CONTENTS

Foreword vii

1 CHALLENGES OF SOCIAL MANUFACTURING: EVIDENCE FROM THE MALAYSIAN APPAREL INDUSTRY 1
Suhana Mohezar & Shamshul Bahri
Introduction 1
Social Manufacturing: Definitions, Core Aspects and Application in the Apparel Value Chain 3
A Hypothetical Scenario of Social Manufacturing 5
Methodology 7
Research Findings 9
 Difficulty in Quality Control 9
 Legal Issues 11
 Incompetent Technological Capabilities 12
 Willingness to Co-create 13
Discussion 14
Conclusion and Implications 15
References 17

2 APPLYING DESIGN SCIENCE IN OPERATIONS MANAGEMENT: OPPORTUNITIES AND CHALLENGES 19
Yeong Wai Chung & Noor Akma Mohd Salleh
Introduction 19
What is Design Science? 19
Evolution of Design Science Research 19
The Relevance Cycle 22
The Rigor Cycle 22
The Design Cycle 23
Design Science Research in Operations Management 27
Conclusion 29
References 30

3 INVESTIGATING THE ROLE OF CHIEF SUPPLY CHAIN OFFICER (CSCO) IN ORGANIZATIONS 33
Phoong Seuk Wai & Noor Ismawati Jaafar
Introduction 33
Supply Chain Management: An Overview 33
Role of Chief Supply Chain Officer in Organizations (CSCO) 34
Traits of CSCOs 37
Job Descriptions in Different Industries
Conclusion
References

4 ECO-INNOVATION TOWARDS SUSTAINABILITY: AN IMPLEMENTATION PERSPECTIVE
Kanagi Kanapathy & Sedigheh Moghavvemi
Introduction
Drivers of Eco-innovation
Barriers to Eco-innovation
Eco-innovation Implementation
 Eco-organization Implementation
 Eco-process Implementation
Eco-product Implementation
Eco-innovation Implementation in a Firm: Case of an Electrical Goods Manufacturer
 Firm Profile
 Respondent Profile
 Awareness of Eco-innovation and Main Eco-innovation Activities
Drivers and Benefits of Eco-innovation
Eco-innovation Implementation
Eco-organization Implementation
Eco-process Implementation
Eco-product Implementation
 Eco-product in a Firm: Implementation Levels
Conclusion
References

5 BULLWHIP EFFECT ON INVENTORY MANAGEMENT: CONCEPTUAL AND TECHNICAL CHALLENGES
Azmin Azliza Aziz & Ainin Sulaiman
Introduction
Causes of Bullwhip Effect
Conceptual Challenges
Technical Challenges
Conclusion
References

Index
FOREWORD

This book would not be possible without strong support from the following groups and personnel. First and foremost, we would like to thank the Equitable Society Research Cluster that had provided a generous research grant (grant number RP039A/B/C/D/E – 16SBS) which led to the successful production of this book. We would also like to thank the Faculty of Business and Accountancy for providing the facilities and giving us time off from our teaching commitments to complete the writing of this book. We would like to express our special thanks to all the members of the Department of Operations and Management Information Systems, Faculty of Business and Accountancy, University of Malaya who had cooperated closely in the planning and writing of the book. We would also like to thank our families and the contributors for their love and support throughout the writing process. Special thanks to Miss Siti Munirah bt Ahmad Faizul Lim who did the messy and difficult work of putting all the materials together. We wish her a happy and prosperous future after completing her Master’s study programme and venturing into the world outside the university.

Editors
Shamshul Bahri
Noor Ismawati Jaafar
Suhana Mohezar
CHAPTER 4

ECO-INNOVATION TOWARDS SUSTAINABILITY: AN IMPLEMENTATION PERSPECTIVE
Kanagi Kanapathy & Sedigheh Moghavvemi

INTRODUCTION

In the past few decades, the world witnessed a shift of consumer's preference to 'green' products. Consumer purchase is now guided by principles such as how products are sourced, produced, packed and disposed. An increasing number of people are willing to pay premium for 'green' products. 'Green or eco' encourages innovative products that enhance consumer value, improve brands and create a sturdy company (Yenipazarli, 2012). Manufacturing firms are moving towards eco-innovation to cope with the 'green' shift in consumer purchase.

Kemp and Pearson (2007, p. 16) defined eco-innovation as 'the production, application or exploitation of a good, service, production process, organizational structure or management or business method that is novel to the firm or user and which results, throughout its life cycle, in a reduction of environmental risk, pollution and the negative impacts of resource use (including energy use) compared to relevant alternatives.' According to Horbach, Rammer and Rennings (2012, p. 119), eco-innovations are 'product, process, marketing and organizational innovations, leading to a noticeable reduction in environmental burdens.' Explicit goals or side effects of innovations can serve as positive environmental effects and they can occur within the respective companies or through customer use of products or services. Eco-innovation diminishes the environmental impact of consumption and production activities without considering whether the outcome is intentional or not (OECD, 2010).

Several sustainability frameworks have been presented by researchers' Sustainable Operations Management (Kleindorfer et al., 2005; Gimenez et al., 2012; Gunasekaran et al., 2014; Walker et al., 2014), Green Supply Chain Management (Sarkis, 2003; Cousins et al., 2004; Zhu & Sarkis, 2004; Rao & Holt, 2005; Green et al., 2012, Hsu et al., 2013; Lin, 2013) and Sustainable Supply Chain Management (Seuring & Muller, 2008; Carter & Rogers, 2008; Carter & Easton, 2011; Beske, 2012, Seuring, 2013, Brandenburg et al., 2014). These researchers have viewed innovation
as a key factor in sustainability but have not paid much attention to what drives firms to develop eco-innovations or the status of eco-innovation adoption in firms within the supply chain.

In recent times, manufacturing has grown considerably in emerging economies. However, this has been achieved at an environmental cost (Chen & Hung, 2014). At present, these countries, particularly those who compete in the global market, face growing pressure to generate products in an environmentally sustainable manner. Although these firms are progressing towards eco-innovation, research that measure the key dimensions of eco-innovation and the status of its implementation remain lacking. In this chapter, we discuss the key dimensions of eco-innovation activities, barriers, drivers and benefits as well as the level of eco-innovation implementation in manufacturing firms.

DRIVERS OF ECO-INNOVATION

Communities gain from eco-innovation as firms assume expenditures in order to conform to regulations and decrease their environmental load (Rennings, 2000; Rennings, Ziegler, Ankele & Hoffman, 2006). Thus, firms spending on eco-innovation incur more costs than their contaminating rivals and the positive externalities work as a deterrent for them (Rennings et al., 2006). For this reason, technological push and market pull factors navigate firms towards the implementation of general innovation, whereas regulatory push/pull forces should be considered for stimulating eco-innovation (Porter & van der Linde, 1995; Rennings, 2000; Beise & Rennings, 2005; Wagner, 2008; De Marchi, 2012; Horbach, 2008; Schmidt et al., 2010; Van den Bergh et al., 2011; Fernando et al., 2016).

A research project on eco-innovation, IMPRESS (Impact of Clean Production on Employment in Europe: An Analysis Using Surveys and Case Studies) was based on 1,594 telephone interviews with randomly selected manufacturing and service firms in eight sectors (Rennings & Zwick, 2012). Interviews were conducted in five countries (Germany, Switzerland, Italy, the Netherlands and the United Kingdom). The research focused on eco-innovation and encompassed questions regarding the kinds of environmental novelties initiated in the preceding three years, the motivations for the eco-innovations and the organization’s most significant eco-innovation. The study found other drivers for eco-innovation in addition to regulations. These drivers are as follows:

a) Improving the firm’s representation.
b) Reducing costs.

c) Obtaining certification for product and service innovations.

d) Retaining current markets and expanding market shares.

The IMPRESS project also determined that conforming to environmental regulations was more important for pollution control innovations than for other types of eco-innovation, especially service, distribution and product innovations.

Eco-innovation drivers are classified as internal or external drivers (Fernando et al., 2016; Agan et al., 2013; Del Río González, 2009; Gadenne et al., 2009; Horbach, 2008; Horbach et al., 2012; Lewis & Cassells, 2010; Sharma, 2001; Testa & Iraldo, 2010; Van Hemel & Cramer, 2002; Walker et al., 2008; Yen & Yen, 2012).

Del Río González (2009) pointed out that internal drivers refer to the internal preconditions and features of a company that facilitate its involvement in environmental technological shift. Thus, environmental management systems (EMS) can depict key in-house capabilities which facilitate the constant generation/adoptions of eco-innovation (Wagner, 2007). Firm size, technological push (R&D), EMS (specifically ISO14001) and a company’s green capabilities are key internal factors that facilitate either the development or implementation of product eco-innovation.

External drivers are induced and motivated by a wide range of factors that apply pressure to which firms react; thus, external drivers characterize interaction with other institutional, market and social performers (Del Río González, 2009). Market pull factors and regulations are the two main external drivers that trigger product eco-innovation (Fernando et al., 2016).

BARRIERS TO ECO-INNOVATION

The European Commission’s Environmental Technologies Action Plan identified the following barriers to environmental technologies:

a) Economic barriers stretch from market prices which do not show the external costs of products or services to the increased cost of investments in eco-friendly technologies due to their apparent risk, the size of initial investment or the sophistication of shifting from conventional to eco-friendly technologies.

b) Regulations and standards can also surface as barriers to innovation when they are ambiguous or too precise whereas good legislation can spur eco-friendly technologies.
INDEX

'green' products 45
'green' shift 45

A
agent-based models 61
agile supply chain 36, 42
apparel 2, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17
Application 3, 39, 67
Artefact 20, 25

B
batch ordering 61, 62
Bullwhip Effect 59, 60, 66, 67, 68, 69, 70

C
cash flow 63, 64
centralized policy 62
Chief Executive Officer 33
Chief Financial Officer 33
Chief Supply Chain Officer 33, 34, 42, 43
cloud technologies 15
communication styles 37
crowdsourcing 3, 14
customized products 1, 4, 15

D
demand amplification 60
demand forecasting 60, 61
Design science 20, 23, 26, 27, 29
drivers 46, 47, 52
dynamic 15, 38, 63, 64, 65

E
Eco-innovation 45, 46, 47, 48, 50, 51, 52, 54, 55, 56
eco-innovation activities 46, 49, 52
Eco-innovation adoption 46
Economic barriers 47
Energy Efficiency Label 51
environmental burdens 45
evaluation 20, 21, 23, 24, 25, 27, 28

Exaptation 26
exponential smoothing 62

F
Facebook 1, 6
field testing 22, 23, 24
financial bullwhip 64, 66
Forrester effect 60
functional leader 35, 42

G
green bullwhip 63, 64, 66

I
IMRESS 46, 47
improvements 25, 39, 49
Inadequate research attempts 48
incurred costs 36
information flows 59
innovation 2, 11, 13, 14, 16, 33, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57
Internet of Things 3
invention 11
inventory 39, 59, 61, 62, 64, 65

K
key dimensions 46, 53
knowledge base 21, 22, 23, 25
Knowledge Contribution Framework 26

L
Lead time 61
lean supply chain 36
legal 11, 14
leverage risk management 34

M
machine learning models 61
manufacturing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 33, 34, 39, 41, 46, 48, 49, 51, 52, 53, 64
material flows 59
moving average 61, 62
multiplier effect 60
natural science: 27, 28, 29

OHSAS 18001 50
online communities 10, 15
operations management 19, 26, 27, 28, 29
OUT policy 62

partnership 35, 42
personalized products 1, 2
problem 9, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 40, 65, 66
process vii, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 20, 23, 25, 27, 28, 29, 38, 39, 41, 45, 48, 49, 51, 52, 53, 59, 60, 65
processes 12, 15, 19, 21, 22, 23, 25, 35, 37, 38, 39, 40, 48, 49, 52, 59, 61

quality 9, 10, 14, 16, 20, 24, 35, 36, 38, 39, 41

reduction of environmental risk 45
relevance 20, 22, 23, 24, 25
Requirement 9
Rigor 21, 22, 25
risk capital 48

safety stock 59
Search Marketing Optimization 41

shortage gaming 60, 61
signal processing 61
social manufacturing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
Social media 1, 10
social networks 1
solution 20, 24, 25
sourcing 34, 35, 39, 41, 42
stakeholders 36, 37, 38
stochastic 65
supply-and-demand 36
supply chain 1, 13, 15, 33, 34, 35, 36, 38, 39, 40, 41, 42, 46, 59, 60, 61, 62, 63, 64, 65, 66
supply chain management 1, 33, 34, 35, 39, 42, 65
Supply Chain Operations Reference 35
supply chains 1, 35, 36, 40
system 6, 13, 36, 39, 48, 51, 60, 62, 64, 65

technological push 46, 47
technology 1, 4, 5, 12, 15, 21, 22, 33, 34, 35, 37, 38, 42, 65
time series 61
top management 33, 34, 36, 42

utility 20, 25, 27

value chain 2, 4, 5, 14, 15
variance amplification 59
Current and Emerging Issues in Operations Management

Operations management has been recognized as an academic discipline in business education programmes since 1980. Despite the initial struggle in differentiating itself from operations research, management science and industrial engineering, it has emerged as an exciting discipline in business schools worldwide with significant changes in terms of scope and techniques used in the last few decades. Starting from Enterprise Resource Planning (ERP), Supply Chain Management (SCM), Just in Time (JIT) and agile manufacturing, the field of operations management has continued to evolve in line with the extensive global competition and dynamic environment. The ever-shrinking product life cycles, new demands on the labour market, sustainability concerns and digitization of processes require innovative approaches, paradigms and methodologies to operations management. The dynamism of operations management field has led to the emergence of trends and developments which must be considered by any business that wishes to position itself strategically. In response to this, this book intends to discuss current and emerging topics in the field. The first chapter explains how the information technology revolution of mobile technologies, 3D printing and social networks are changing manufacturing philosophy and production mode of conventional practices to one that is more socialized and collaborative, hereby termed as social manufacturing. The second chapter focuses on how design science research could be applied in operations management, in the light of big data and cloud-based technologies. In the third chapter, the authors investigated the possible roles of the chief supply chain officer in aligning the management of supply chain with the strategic direction of an organization. Meanwhile, chapter four highlights the dimensions of key eco-innovation activities and how they are implemented in manufacturing firms. In chapter five, the authors discuss the concept of “bullwhip effect” in the context of today’s organization. It is hoped that these chapters will highlight the current and emerging issues in operations management that can affect the success of an organization.