To learn more about the AIP Conference Proceedings Series, please visit http://proceedings.aip.org
INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY – RESEARCH AND COMMERCIALIZATION 2011

(INTON 2011)

Sabah Malaysia 6 – 9 June 2011

EDITORS

K. Noorsal
Advanced Materials Research Centre (AMREC)
SIRIM Berhad, Kedah, Malaysia

A. K. Masrom
Nanotechnology Focal Point
SIRIM Berhad, Selangor, Malaysia

All papers have been peer reviewed.

SPONSORING ORGANIZATIONS

Science and Technology Unit, Chief Minister’s Department, Sabah
Universiti Malaysia Sabah

Melville, New York, 2012
AIP CONERENCE PROCEEDINGS 1502
Table of Contents

Preface: International Conference on Nanotechnology - Research and Commercialization 2011

Kartini Noorsal and Abdul Kadir Masrom

1

Committees and Sponsors

3

PLENARY PAPERS

Tailoring of electron diffusion through TiO$_2$ nanowires

R. Jose and M. M. Yusoff

5

Silicon nanowire sensor by mix and match lithography process: Fabrication and characterization

U. Hashim

26

CONTRIBUTED PAPERS

Investigating the influence of ionic concentrations and subunit interactions on the self-assembly of E2 protein

Tao Peng, Sze Wah Tan, Ratna Ekawati Dharmawan, and Sierin Lim

34

Effect of operating temperature and nanotube pore size on the sensitivity of hydrogen sensor

Norani Muti Mohammed and Nurhidaya Soriadi

53

Electrochemical synthesis of multisegmented nanowires

Kuan-Ying Kok, Inn-Khuan Ng, and Nur Ubaidah Saidin

65

Effect of calcination method on the product distribution from catalytic degradation of polystyrene in the presence of 1% Pd/Al$_2$O$_3$ catalysts

Anita Ramli, Lim Sheo Kun, Chong Fai Kait, Noorhana Yahya, and Hanita Daud

73
Protein cage assisted metal-protein nanocomposite synthesis: Optimization of loading conditions
Barindra Sana, Marcia Calista, and Sierin Lim 82

Synthesis of various shapes of titanate nanoparticles via hydrothermal reaction
Kim Song Tan and Jason Riley 97

Reasons for using polymer blends in the electrospinning process
Lenka Martinova and Daniela Lubasova 115

Comparison of multi-walled carbon nanotubes (MWNTs) and activated carbon (AC) as adsorbents in heavy metal adsorption
Nurul Syafiqin Mohamad Shah, Noor Azurah Zaina Abidin, Suriati Sufian, and Ku Zilati Ku Shaari 129

Development and characterization of acrylated palm oil nanoparticles using ionizing radiation
Rida Tajau, Wan Md Zin Wan Yunus, Khairul Zaman Mohd Dahlan, Mohd Hilmi Mahmood, and Kamaruddin Hashim 143

Synthesis of gold nanoparticles and silver nanoparticles via green technology
Zulfiqaar Ahmed and S. S. Balu 158

Phase emerging from intramonolayer cycloaddition on micro-patterned monolayer
Hairul A. Tajuddin, Robert J. Manning, Graham J. Leggett, and Nicholas H. Williams 171

Performance analysis of dye solar cells with various nanoparticles-aggregates mesoscopic multilayer configurations
Adel Eskandar Samsudin and Norani Muti Mohamed 182

Porous silicon based violet-UV detector

Fabrication of sodium titanate nanowire from different precursors
M. S. MeorYusoff, M. Masliana, P. Wilfred, E. M. Mahdi, and D. Parimala 211
Synthesis and characterization of nickel ferrite magnetic nanoparticles by co-precipitation method
B. H. Ong, E. S. C. Chee, S. B. O. A. Abd Hamid, and K. P. Lim 221

Self-aligned Cu electroplating of the front surface contact on silicon solar cells

Effect of parameters on carbon nanotubes grown by floating catalyst chemical vapor deposition
S. Y. Lim, M. M. Norani, and S. Suriati 242

Synthesis and properties of nanosized silver catalyst supported on chitosan-silica nanocomposites
A. Haghighizadeh, W. L. Tan, M. Abu Bakar, and S. Ab Ghani 255

The effect of aging temperature on the pores of mesoporous SBA-15 silica
B. Mazinani, A. Beitollahi, A. K. Masrom, S. Ibrahim, and F. Jamil 272

Effect of etching time on porous silicon processing
Khaldun A. Salman, Khalid Omar, and Z. Hassan 280

Study on the physicochemical properties of Fe/CeO$_2$ catalysts as an effect from different iron loading
Mas Fatiha Mohamad, Anita Ramli, and Suzana Yusup 288

Iron oxide magnetic nanoparticles: A short review
S. F. Hasany, A. Rehman, R. Jose, and I. Ahmed 298

Investigation of back surface fields effect on bifacial solar cells
Suhaila Sepeai, M. Y. Sulaiman, Kamaruzzaman Sopian, and Saleem H. Zaidi 322

Effect of water content in the formation of TiO$_2$ aggregates on the performance of dye solar cells (DSCs)
Siti Nur Azella Zaine, Norani Muti Mohamed, and Mohamad Azmi Bustam 336

Effects of sodium doping on phase composition and morphology of barium titanate particles
K. Y. Chew, M. Abu Bakar, and N. H. H. Abu Bakar 348
Characteristics of ZnO nanostructures produced with [DMIm]BF₄ using ultrasonic radiation

Study on the performance of carbon nanotube-based electrochromic cell
Muhammad Shahazmi Mohd Zambri, Norani Muti Mohamed, and Chong Fai Kait

Vanadium pentoxide nanotubes by electrospinning
Neeta L. Lala, R. Jose, and M. M. Yusoff

Application of nanofluids in heat transfer enhancement of compact heat exchanger
P. Gunasegaran, N. H. Shuaib, M. F. Abdul Jalal, and E. Sandhita

Field electron emission properties from zinc oxide nanostructures
Nurul Ain Samat, Roslan Md Nor, and Nurul Aini Zakaria

Biomimetic hierarchical ZnO structures with superhydrophobic property
N. U. Saidin, K. Y. Kok, I. K. Ng, and F. K. Ahmad Bustamam

Catalytic performance of hybrid nanocatalyst for levulinic acid production from glucose
Nazlina Ya’aini and Nor Aishah Saidina Amin

Influence of milling time on fineness of Centella Asiatica particle size produced using planetary ball mill
M. Z. Borhan, R. Ahmad, M. Rusop, and S. Abdullah

Application of nano filter for organic pollutant degradation
Mohammad Qandalee, Mehdi Hatami, Ali Majedi, Mohsen Bateni, and Seyed Mohammad Vahdat

The effect of ZnO nanorod growth duration by hydrothermal deposition method to the photovoltaic properties
Engku Abd Ghapur Engku Ali and Roslinda Rezali

Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate
Ahmad M. M. Eid, Saringat Haji Baie, and Osama Arafat
Electrical and alcohol sensing properties of PEO/MWCNT composites
Faridah Abdul Razak, Nessrin Awadhallah Kattan, and Roslan Md. Nor 495

Improved mechanical properties of HDPE/nano-alumina composite through silane coupling agent
N. Akmil, C. A. Luqman, M. Ahmad, and K. Zaman 500

Effects of pH on physicochemical properties of nanocrystalline TiO₂ synthesized via sol-gel hydrothermal method
Ita Athirah Ahmad, Anita Ramli, and Moulay-Rachid Babaa 511

Investigation on the cooling performance of a compact heat exchanger using nanofluids
M. F. Abdul Jalal, N. H. Shuaib, P. Gunnasegaran, and E. Sandhita 520

Structural and optical properties of zinc oxide film using RF-sputtering technique
A. J. Hashim, M. S. Jaafar, and Alaa J. Ghazai 538

Author Index 547
Committees and Sponsors

Organizers
SIRIM Berhad, Malaysia

Sponsors
Science and Technology Unit, Chief Minister’s Department, Sabah, Malaysia
Universiti Malaysia Sabah (UMS), Malaysia

Supported By
Ministry of Science, Technology and Innovation (MOSTI), Malaysia

Advisory Committee
Prof. Emeritus Dato’ Dr. Muhammad Yahaya, Universiti Kebangsaan Malaysia, Malaysia
Prof. Hanjo Lim, Ajou University, Korea
Prof. Valentinas Snitka, Kaunas University of Technology, Lithuania
Prof. Dr. Guozhong Cao, University of Washington, USA
Prof. Dr. Saeed Sarkar, Tehran University of Medical Sciences, Iran
Assoc. Prof. Dr. Yarub Al-Douri, Universiti Malaysia Perlis, Malaysia
Dr. Ahmad Ibrahim, Malaysian Industry-Government Group for High Technology, Malaysia

Organizing Committee
Dr. Abdul Kadir Masrom (Chairman)
Tn. Hj. Abdul Ghani Abdul Rahman (co-Chairman)
Dr. Kartini Noorsal
Dr. Razali Idris
Dr. Saharudin Hamzah
Dr. Mohd Amin Hashim
Dr. Kamisah Mohamad Mahbor
Norazah Abdul Razak
Azaziah Mat Hassan
Zuhana Zubir
Siti Munirah Hasanaly
Siti Hajar Kasim
Proceedings of the International Conference on Nanotechnology - Research and Commercialisation (ICONT 2011)

Editors
Dr. Kartini Noorsal, SIRIM Berhad, Malaysia
Dr. Abdul Kadir Masrom, SIRIM Berhad, Malaysia

Referees
Prof. Hang Jo Lim, Anjou University, Korea
Prof. Valentinas Smitka, Kaunas University of Technology, Lithuania
Prof. Takhee Lee, Gwangju Institute of Science and Technology, Korea
Prof. Yong Hoon Cho, KAIST, Korea
Prof. Emeritus Dato' Muhammad Yahaya, Universiti Kebangsaan Malaysia, Malaysia
Prof. Ng. Kwan Hoong, University of Malaya, Malaysia
Prof. Jose Rajan, Universiti Malaysia Pahang, Malaysia
Prof. Yarub Al Douri, Universiti Malaysia Perlis, Malaysia
Assoc. Prof. Anita Ramli, Universiti Teknologi Petronas, Malaysia
Dr. Md Ezharul Hoque Chowdhury, Monash University, Malaysia
Dr. Abdul Kadir Masrom, SIRIM Berhad, Malaysia
Dr. Kartini Noorsal, SIRIM Berhad, Malaysia
Dr. Kamisah Mohamad Mahbor, SIRIM Berhad, Malaysia
Dr. Mohd Radzi Mohd Toff. SIRIM Berhad, Malaysia
Dr. Mat Husin Saleh, SIRIM Berhad, Malaysia
Dr. Mazli Mustapha, SIRIM Berhad, Malaysia
Dr. Razali Idris, SIRIM Berhad, Malaysia
Dr. Surani Buniiran, SIRIM Berhad, Malaysia
Dr. Mohd Zahid Abd Malek, SIRIM Berhad, Malaysia
Siti Munirah Hasanaly, SIRIM Berhad, Malaysia
Porous Silicon Based Violet-UV Detector

Naser M. Ahmeda, Z. Hassana, Naif Alhardanc, Yarub Aldourib, M. J. Jassima Muhammad Anis Ibnu Hajara, S.K. Mohd Bakhdria, and N.A. Ahmad Zainia

a School of Physics, Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
b Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis 01000 Kangar, Perlis, Malaysia
c Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Email: naser@usm.my

Abstract. A new method of fabricating porous silicon detecting (Violet-UV) spectral regions is presented. This method uses a stencil mask contained matrix of round holes, typically 0.5 mm in diameter. SEM, and PL have been used to characterize the morphological and optical properties of the porous silicon (Psi). SEM shows uniformed circular pores with 85\% porosity. The studies of the porous structure and optical properties showed that the band gap is about 3.6396 eV at 340.7 nm). Silver (Ag) fingers contact was deposited on the PSI to form MSM (full name) photo-detector. The detector shows in both wavelengths (400 nm, 365 nm) with repetitive shots have very high stability and reliability and the rise time is about 0.5 sec for a 3 volts reverse bias for UV light (365 nm) illumination and 10.41 sec for Violet light (400 nm).

Keywords: UV detector, Porous silicon, electrochemical anodic etching
PACS: 81.05.Rm
INTRODUCTION

Ultraviolet (UV) photodetectors with high responsivities for wavelengths shorter than 400 nm are very important for applications. They could open new applications in industrial products, scientific research as well as in consumer products, such as UV sterilization, UV physiotherapy, UV fluorescent analysis and investigation, UV exposure of photolithography and so on. However, devastating effects of UV radiation may be very dangerous in some cases. For example, culture relics, paintings and calligraphy works, rubber and plastics will undergo an accelerated aging process under a prolonged exposure to UV irradiation. Moreover, UV radiation may also have devastating effects on eyes, skins, plants and so on. It is very important therefore to be able to determine the intensity and the amount of UV radiation [1, 2].

Many studies have been carried out on porous silicon (PSi), and most PSi layers have been formed by anodic etching in an HF based electrolyte. The nano-crystalline porous size can lead to quantum confinement effects and the existence of a direct band gap in otherwise an indirect band gap material. Depending on the conditions, the anodic porous layers can be prepared with a wide variety of topographies from arrays of independent cylindrical pores to dense networks of nm-dimension pores that may be branched or interconnected [3]. These pores provide a large surface area for chemical partitioning or binding, and thus PSi films have generated much interest as a sensing medium. Optical detection in PSi can be performed in both the visible and ultra violet (UV) spectroscopic regimes. During the recent years there is an increasing interest in the development of UV detectors due to wide range applications of the UV light [4].

In this paper we have fabricated a new type of porous silicon - based violet - UV detector and report for the first
time a stencil mask technique for the homogeneity of the porosities areas of nano-porous silicon layer. There are different etching cavity designs in anodic etching, the experiment generally involves a Teflon cell, a hydrofluoric acid (HF) solution and two electrodes, the anode being the silicon substrate and the cathode; a platinum rod. The etching parameters include the applied voltage or current, the etching duration, the etching solution composition (HF concentration), and the illumination. These conditions can be adjusted to achieve desired porous silicon morphologies and may vary for silicon substrates of different doping type and resistivity.

POROUS AND DEVICE FABRICATION

The PSi fabrication process is illustrated in Figure 1. Samples of Si (100) of about 10 mm² and 0.5 mm thickness were cut from n-type (resistivity $\rho = 0.012 - 1.25 \, \Omega \, cm$) silicon wafers, polished on one side. The PSi layers were made by electrochemical etching of n-type wafer. Etching was performed in an electrochemical Teflon cell, brass housing with a circular window acted as a back contact, stencil mask used in contact with the silicon wafer contained matrix of round holes, typically 0.5 mm in diameter to create high porous density inside the holes. In order to create the additional charge carriers on the front surface, a standard bulb lamp (100 Watt) front side lamp was attached above the etching cell. The PSi layer was formed on substrate by anodic etching in HF: Ethanol (1:4) solution at a constant current density of 50 mA/cm² for 30 min in the light. There are different mechanisms to explain the dissolution chemistries of Si but it is generally accepted during the pore formation, two hydrogen atoms evolve for every Si atom dissolved [5,6]. The current efficiencies are about two electrons per dissolved Si atom [7-9]. The
chemical equation for the anodic reactions can be written during pore formation as

\[
\text{Si} + 6\text{HF} \rightarrow \text{H}_2\text{SiF}_6 + \text{H}_2 + 2\text{H}^+ + 2\text{e}^- \quad (1)
\]

To further increase the responsivity of our detector we have deposited on the top of the PSi two comb-shaped silver (Ag) electrodes. The contacts with thickness of 250 nm and target purity of 99.99 % has been deposited using Edwards A500 RF-sputtering system using suitable metal mask which contains five fingers with dimension of 0.38 mm, 0.32 mm and 6.6 mm for the width, finger spacing and length of each electrode, respectively as shown in Figure 2 in order to enhance the collected charge of the photogenerated carriers.
FIGURE 1. Electrochemical cell used for PSi formation.

FIGURE 2. Schematic diagram of PSi detector.
RESULTS AND DISCUSSION

Several authors have reported UV emission in PL spectra of porous silicon [10-20]. In our case we have used a new method using the stencil with matrix holes to get condense porous in small area. Figure 2 shows the top view pc-scope images of porous silicon inside the holes that were formed by electrochemical etching under anodic current density of 50 mA/cm². It seems that the circles are very uniform and have high density porous structure. From this structure we can analyze that the detector’s active area contains both silicon and porous silicon and appears as quantum dots.

![Figure 2](image1.png)

FIGURE 2. The top view images of porous silicon inside the holes that were formed by electrochemical etching under anodic current density of 50 mA/cm².

Figure 3 shows the morphology of the PSi formed using the new technique (stencil mask). PSi exhibited a uniformed network distribution of pores with 85 % porosity and this is analysed using MATLAB image processing software. Figure 4 shows the SEM images which reveal its

![Figure 3](image2.png)

FIGURE 3. The optical images of the prepared PSi with magnification of 11x, 34x, and 80x.

Figure 3 shows the morphology of the PSi formed using the new technique (stencil mask). PSi exhibited a uniformed network distribution of pores with 85 % porosity and this is analysed using MATLAB image processing software. Figure 4 shows the SEM images which reveal its
highly porous nature, and presented at higher magnifications to better reveal the details of the highly porous structure.

![SEM images at same position and different magnifications](image)

FIGURE 4. SEM images at same position and different magnifications

ELECTRICAL AND OPTICAL CHARACTERIZATION

Figure 5 shows the I-V characteristics of the PSi in the dark, ambient and under UV light illumination. The measurements were carried out with an applied voltage variation from (-5 V to 5 V), the conductivity is greatly increased as a result of the UV light illumination, as evidenced by the higher current. The I-V curves for a planar configuration demonstrate the behavior of two Schottky junctions.
FIGURE 5. Current-voltage characteristic of a PSi photo-detector under dark, ambient light and UV illumination.

The leakage currents are 7.5 μA at a negative bias of 5 V and 9 μA at a positive bias of 5V. The maximum gain reached was two orders of magnitude under UV illumination. The response of M–PSi–M photodetectors increases with the bias voltage.

FIGURE 6. Photoluminescence spectra for porous silicon
In this paper, the PL measurements were performed using He-Cd laser (325 nm). The measurements were carried out at room temperature and were repeated several times to guarantee the behavior of the PL signal. UV emission peak were observed in porous silicon subjected to the nano-sized size of silicon through quantum confinement effect. This is because of the new method which creates dense porous inside the holes and this emission was enhanced by surface plasmon frequency coupling between the silver electrode and the porous net. Furthermore, the appearance of the luminescence bands in the range of 330-380 nm could be due to a quantum confinement assisted radiative recombination of electrons and holes at impurity related defects or at the vacancies of neutral oxygen.

In summary the observed photoluminescence are attributed to many reasons:

1- Quantum confinement effect in nano-size microstructures of PSi which is widening the band gap due to quantum size effect. This means the smaller the particle size, the larger the emission energy, the better the particle size homogeneity and the narrower the spectral width.

2- After the silicon surface becomes porous silicon, the energy gap undergoes a zone folding effect and changed from indirect energy gap to direct energy gap.

3- The peak appears in the UV region because of the highly porous sample and it is associated with a decrease of material skeletal dimension which causes a signal to appear in the UV region of the spectrum.

4- Plasmon is an interesting way to investigate the properties of PSi. Even though our PSi sample emits light in the UV from any above reasons the modification of the silver plasmon energy and coupling to the emitted light from active PSi could be a possibility.
Time stability of the detectors under illumination and their capacity to restore the original dark current value without radiation is a crucial parameter in evaluating the potential of these devices. We, therefore, measured current versus time and at regular intervals when we opened the light shutter. The data in Figure 7 and 9 shows clear unstable photocurrent even during simple illumination.

FIGURE 7. Dynamic photoresponse behavior of our porous silicon detector illuminated by UV light (365 nm) with 200 mcd luminous.
In Figure 7, we report dynamic current response versus time of the porous silicon at a bias of 3V under pulsed illumination from a 365 nm wavelength with 200 mcd luminous, the light on steps of 100 sec and off 200 sec and the complete measurement was in 10 min. The n-type based porous silicon device has a fast rise time of 0.5 sec and a very short recovery time as shown in Figure 8.

FIGURE 8. The rise time (10 % to 90 %) of the PSi UV detector using pulsed LED with 365 nm wavelength and 200 mcd luminous.

Figure 8 shows the time dependent data collection of dark current when a 3 V reverse bias is applied. After 100 sec, the dark current raises the constant value of 13 \(\mu A \) and the current during the illumination is 17.5 \(\mu A \). In order to evaluate the response, we have calculated the current difference between the dark current and the illumination current. The difference was around 4.5 \(\mu A \) and it was constant as a function of time. This allows using the detectors in experiments that need long illumination and repetitive shots, high stability and reliability.
FIGURE 9. Dynamic violet light (400 nm) induced current behaviour of porous silicon detector obtained under 3V bias voltage.

The violet response curve is shown in Figure 9, using 400 nm wavelength and 2000 mcd luminous. We report the dynamic current response versus time from the porous silicon at a bias of 3V under pulsed illumination from a 400 nm wavelength with 2000 mcd luminous, the light on steps of 50 sec and off 100 sec and the complete measurement was in 10 min. The n-type based porous silicon device has a rise time of 10.41 sec and a very short recovery time as shown in Figure 10. The device with repetitive shots has a very high stability and reliability.
FIGURE 10. The rise time (10% to 90%) of the PSi UV detector using pulsed LED with 400 nm wavelength and 2000 mcd luminous.

CONCLUSIONS

We have demonstrated the photoconductive Violet and UV detector using planer interdigitated electrodes. The results obtained from the PL, responsivity, dynamic photoresponse and dark current measurements prove the potential of both the porous silicon material and technological processes for Violet and UV detection. The detector shows in both wavelengths (400 nm, 365 nm) with repetitive shots have very high stability and reliability. The detector shows fast photoresponse with a rise time of 0.5 sec for UV pulse and 10.41 sec for Violet pulse. Future work will include the backside illumination and a very thin Ag layer as a semitransparent metallic contacts, as well as interdigitated structures with nanometric dimensions.
ACKNOWLEDGMENT

This work was conducted with the support from Universiti Sains Malaysia and Ministry of Science Technology and Innovation of Malaysia.

REFERENCES