Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

M F Shukur¹, Y M Yusof¹, S M M Zawawi², H A Illias³ and M F Z Kadir⁴

¹ Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
² Chemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
³ Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
⁴ Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

E-mail: mfzkadir@um.edu.my

Received 21 August 2012
Accepted for publication 17 December 2012
Published 15 November 2013

Abstract
This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH₄SCN). The sample containing 40 wt% NH₄SCN exhibited the highest conductivity value of $(1.81 \pm 0.50) \times 10^{-4}$ S cm⁻¹ at room temperature. Conductivity has increased to $(1.51 \pm 0.12) \times 10^{-3}$ S cm⁻¹ with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E_a) was calculated for both systems and it is found that the sample with 40 wt% NH₄SCN in the salted system obtained an E_a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH₄SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm⁻¹ with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

PACS numbers: 77.22.Ch, 78.30.Jw, 82.35.Cd

1. Introduction
Green materials have attracted worldwide attention for their potential to reduce the impact of hazardous products [1]. Natural biopolymers are good candidates as electrolyte hosts for long-term use due to their biodegradable properties. Natural biopolymers have a minimal impact on the environment, are relatively low cost, are high in solubility and are able to form a mechanically stable film [2, 3]. One of the promising natural biopolymers is chitosan. Chitosan is derived from chitin [4]. Chitosan has been used as a food packaging material [5], dietary fiber [6] and potential medicine against hypertension [7]. Chitosan-based polymer electrolytes have been reported to have potential application in electrochemical devices such as proton batteries, lithium batteries and electrochemical double-layer capacitors [8–10]. To serve as a good electrolyte, conductivity is the main property that needs to be given attention. Plasticization is an approach to enhance the conductivity of the electrolyte [11, 12]. The conductivity of the order of 10^{-7} S cm⁻¹ of chitosan–lithium acetate (LiOAc) electrolyte has increased to 5.5×10^{-6} S cm⁻¹ when plasticized with palmitic acid [13, 14]. The addition of ethylene carbonate (EC) to chitosan–ammonium iodide (NH₄I) has increased the conductivity from 3.7×10^{-7} to 7.6×10^{-6} S cm⁻¹ [15]. In the present study, chitosan was doped with NH₄SCN and plasticized with glycerol.

2. Experiment
For the preparation of the salted system, different concentrations of NH₄SCN (SYSTERM) were added to the solution containing 1 g of chitosan (viscosity: 800–2000 cP, 1 wt% in 1% acetic acid (25°C), Sigma–Aldrich) in 100 ml of 1% acetic acid (SYSTERM). All solutions were stirred until complete dissolution. For plasticized system preparation, different amounts of glycerol (SYSTERM)