Lipase-mediated degradation of poly-ε-caprolactone in toluene: Behavior and its action mechanism

Muhammad Haziq Aris a, Mohamad Suffian Mohamad Annuar a, b, *, Tau Chuan Ling a

a Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history:
Received 11 June 2016
Received in revised form
23 August 2016
Accepted 27 August 2016
Available online 30 August 2016

Keywords:
Poly(e-caprolactone)
Lipase
Enzymatic degradation
Organic solvent
Cyclic lactones
Scission mechanism

ABSTRACT

Lipase-catalyzed hydrolysis of poly(e-caprolactone) (PCL) in toluene was investigated. PCL with number-average molecular weight (M_n) 10,000 g mol$^{-1}$ was hydrolyzed using immobilized Candida antarctica lipase B (CALB). The increase in PCL concentration led to a decrease in degradation rate. Enhanced rate was observed when reaction temperature was increased from 30 to 50 °C. Enzymatic chain scission of PCL yielded cyclic dicaprolactone, tricaprolactone, tetracaprolactone and oligomers with M_n less than ~1000 g mol$^{-1}$. Catalytic formation of cyclic lactones via back-biting mechanism in low water content environment was attributed to CALB. Its hydrolysis of PCL displayed consecutive random- and chain-end scission with time from detailed thermal, molecular weight and structural analyses. Apparent activation energy, E_a for hydrolysis was 45 kJ mol$^{-1}$ i.e. half of that reverse reaction. Dicaprolactone and oligomers from hydrolysis readily re-polymerized to produce mid-range polymer with M_n 1400 g mol$^{-1}$ after 36 h in the same reaction medium.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Excellent progress has been made in the application of solvent is a promising route in improving reaction kinetic, increasing the yield of degradation products and ease in products separation compared to aqueous mixture [10,15]. More impor-