Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by *Euphorbia hirta* in MCF-7 breast cancer cells

Abstract

Context: *Euphorbia hirta* L. (Euphorbiaceae) has been used as a folk remedy in Southeast Asia for the treatment of various ailments.

Objective: The current study evaluates the cytotoxicity, cell-cycle arrest, and apoptotic induction by *E. hirta* in MCF-7 breast cancer cells.

Materials and methods: Cytotoxic activity of methanol extract of whole part of *E. hirta* was determined by the MTT assay at various concentrations ranging from 1.96 to 250.00 µg/mL in MCF-7 cells. Cell morphology was assessed by light and fluorescence microscopy. Apoptosis and cell-cycle distribution were determined by annexin V staining and flow cytometry. DNA fragmentation, caspase activity, and reactive oxygen species (ROS) assays were performed using the commercially available kits. To identify the cytotoxic fraction, *E. hirta* extract was subjected to bioassay-guided fractionation.

Results: *Euphorbia hirta* exhibited significant inhibition of the survival of MCF-7 cells and the half inhibitory concentration (IC\(_{50}\)) values was 25.26 µg/mL at 24 h. Microscopic studies showed that *E. hirta*-treated cells exhibited marked morphological features characteristic of apoptosis. *Euphorbia hirta* extract also had an ignorable influence on the LDH leakage and generating intracellular ROS. The flow...
cytometry study confirmed that *E. hirta* extract induced apoptosis in MCF-7 cells. *Euphorbia hirta* also resulted in DNA fragmentation in MCF-7 cells. Moreover, *E. hirta* treatment resulted in the accumulation of cells at the S and G_{2}/M phases as well as apoptosis. The caspase activity study revealed that *E. hirta* extract induced apoptosis through the caspase-3-independent pathway by the activation of caspase-2, 6, 8, and 9. *Euphorbia hirta* hexane fraction, namely HFsub4 fraction, demonstrated highest activity among all the fractions tested with an IC_{50} value of 10.01 µg/mL at 24 h.

Discussion and conclusion: This study revealed that *E. hirta* induced apoptotic cell death and suggests that *E. hirta* could be used as an apoptosis-inducing anticancer agent for breast cancer treatment with further detailed studies.

- Full text HTML
- PDF

- Anticancer,
- caspase,
- G_{2}/M phase arrest,
- S phase arrest

Related articles

View all related articles

- Add to shortlist
- Link

Permalink

http://dx.doi.org/10.3109/13880209.2015.1064451

- Download Citation

Recommend to:
- A friend

Information
- Full text
- Figures & Tables
- References
- Reprints & permissions

Details

- Received: 25 Feb 2015
- Accepted: 15 Jun 2015
Published online: 08 Jul 2015

Author affiliations

- a Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, Penang, Malaysia,
- b RIKEN-USM Joint Research Unit, RIKEN, Wako, Saitama, Japan,
- c School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia,
- d Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia,
- e Faculty of Dentistry, Dental Research & Training Unit, and Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya, Kuala Lumpur, Malaysia, and
- f Faculty of Health, Nanomedicine – Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria, Australia

Journal news

- New to Taylor & Francis in 2015
- 2014 Impact Factor: 1.241 (© 2014 Thomson Reuters, Journal Citation Reports®)

Article metrics

- Views: 53

Article metrics information
Librarians

- Librarians' area
- Pricing
- Institutional account
- Access entitlements
- Co-branding
- IP ranges
- Link resolver preferences
- Usage reports

Authors & Editors

- Book authors
- Journal authors
- Reference work authors
- Editors

Societies

- Current partners
- Publish with us

Help & Information

- Help
- FAQs
- Contact us
- Press releases
- Commercial services

Taylor & Francis Group