Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants

Leong, K.Y., Saidur, R., Mahlia, T.M., Yau, Y.H.

Abstract

The emergence of several challenging issues such as climate change, fuel price hike and fuel security have become hot topics around the world. Therefore, introducing highly efficient devices and heat recovery systems are necessary to overcome these challenges. It is reported that a high portion of industrial energy is wasted as flue gas from heating plants, boilers, etc. This study has focused on the application of nanofluids as working fluids in shell and tube heat recovery exchangers in a biomass heating plant. Heat exchanger specification, nanofluid properties and mathematical formulations were taken from the literature to analyze thermal and energy performance of the heat recovery system. It was observed that the convective and overall heat transfer coefficient increased with the application of nanofluids compared to ethylene glycol or water based fluids. It addition, 7.6% of the heat transfer enhancement could be achieved with the addition of 1% copper nanoparticles in ethylene glycol based fluid at a mass flow rate of 26.3 and 116.0 kg/s for flue gas and coolant, respectively. © 2011 Elsevier Ltd. All rights reserved.

Author keywords

Energy; Flue gas; Heat recovery; Nanofluids

Indexed Keywords

Copper nanoparticles; Energy; Energy performance; Fuel prices; Fuel security; Heat recovery systems; Heat Transfer enhancement; Heating plants; In-shell; Industrial energy; Mass flow rate; Mathematical formulation; Nano-fluid; Nanofluids; Overall heat transfer coefficient; Shell-and-tube; Water-based fluids; Working fluid

Engineering controlled terms: Climate change; Coolants; Ethylene, Ethylene glycol; Flue gases; Fluids; Gas plants; Heat exchangers; Heat transfer coefficients; Recovery; Space heating; Waste heat; Waste heat utilization

Engineering main heading: Nanofluids

References (36)
1. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant
 doi: 10.1016/j.apteng.2007.11.017

2. A review on applications and challenges of nanofluids
 doi: 10.1016/j.rser.2010.11.035

3. Condensing boiler applications in the process industry
 doi: 10.1016/j.apenergy.2010.11.020

4. Energy, exergy and economic analysis of industrial boilers
 doi: 10.1016/j.enpol.2009.11.087

5. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
 doi: 10.1063/1.1341218

6. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
 doi: 10.1016/j.ijheatmasstransfer.2006.02.012

7. Investigation on characteristics of thermal conductivity enhancement of nanofluids

8. Study of thermal conductivity of nanofluids for the application of heat transfer fluids

9. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid
 doi: 10.1016/j.tca.2009.03.007

10. Study of thermal conductivity of nanofluids for the application of heat transfer fluids

11. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid
 doi: 10.1016/j.tca.2009.03.007
New temperature dependent thermal conductivity data for water-based nanofluids
doi: 10.1016/j.ijthermalsci.2008.03.009
View at publisher

Yu, W., Xie, H., Wang, X., Wang, X.

Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets
doi: 10.1016/j.physleta.2011.01.040
View at publisher

Sharma, P., Baek, I.-H., Cho, T., Park, S., Lee, K.B.

Enhancement of thermal conductivity of ethylene glycol based silver nanofluids
doi: 10.1016/j.powtec.2010.11.016
View at publisher

Zeinalli Heris, S., Nasr Esfahany, M., Etemad, S.Gh.

Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube
doi: 10.1016/j.ijheatfluidflow.2006.05.001
View at publisher

Ding, Y., Chen, H., He, Y., Lapkin, A., Yeganeh, M., Šiller, L., Butenko, Y.V.

Forced convective heat transfer of nanofluids
doi: 10.1163/156855207782515021
View at publisher

He, Y., Men, Y., Zhao, Y., Lu, H., Ding, Y.

Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions
View at publisher

Jung, J.-Y., Oh, H.-S., Kwak, H.-Y.

Forced convective heat transfer of nanofluids in microchannels
doi: 10.1016/j.ijheatmasstransfer.2008.03.033
View at publisher

Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions
View at publisher

Vajihra, R.S., Das, D.K., Kulkarni, D.P.

Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids
doi: 10.1016/j.ijheatmasstransfer.2010.06.032
View at publisher

Duanthongsuk, W., Wongwises, S.
An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime
View at publisher

Mohammed, H.A., Gunasegaran, P., Shuaib, N.H.

Heat transfer in rectangular microchannels heat sink using nanofluids
View at publisher

Saidur, R., Kazi, S.N., Hossain, M.S., Rahman, M.M., Mohammed, H.A.

A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems
View at publisher

Jang, S.P., Choi, S.U.S.

Cooling performance of a microchannel heat sink with nanofluids
View at publisher

Leong, K.Y., Saidur, R., Kazi, S.N., Mamun, A.H.

Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)
View at publisher

Mursched, S.M.S., Leong, K.C., Yang, C.

Thermophysical and electrokinetic properties of nanofluids - A critical review
View at publisher

Increase Performance Inc. Flue Gas Calculator

Incofera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S.

Sadik, K., Liu, H.T.

Ramesh, K.S., Dusan, P.S.

Vasu, V., Krishna, K.R., Kumar, A.C.S.

Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids
doi: 10.2298/TS0802027V
View at publisher

Hoijat, M., Etemad, S.G., Bagheri, R., Thibault, J.
32 Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube
doc: 10.1016/j.ijthermalsci.2010.11.006
View at publisher

Iam, A., Saidur, R.

33 Nanofluid as a coolant for electronic devices (cooling of electronic devices)
doc: 10.1016/j.applthermaleng.2011.08.032
View at publisher

Peyghambarzadeh, S.M., Hashemabadi, S.H., Hoseini, S.M., Selfi Jamnani, M.

34 Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators
doc: 10.1016/j.icheatmasstransfer.2011.07.001
View at publisher

Peyghambarzadeh, S.M., Hashemabadi, S.H., Jamnani, M.S., Hoselni, S.M.

35 Improving the cooling performance of automobile radiator with Al 2O 3/water nanofluid
doc: 10.1016/j.applthermaleng.2011.02.029
View at publisher

Sarkar, J.

36 Performance of nanofluid-cooled shell and tube gas cooler in transcritical CO2 refrigeration systems
doc: 10.1016/j.applthermaleng.2011.04.019
View at publisher

Saidur, R.; Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; email: saidur912@yahoo.com

© Copyright 2011 Elsevier B.V., All rights reserved.