Curriculum Vitae

DR. KWA KIAM HEONG

Senior Lecturer
  • Institute of Mathematical Sciences
    Faculty of Science
  • khkwa
  • 03-79674311

PUBLICATIONS


Article in Journal
WoS
  1. Kwa, Kiam Heong (2024). Coherence invariant maps on order-3 symmetric tensors, LINEAR & MULTILINEAR ALGEBRA. . doi:10.1080/03081087.2022.2160424
  2. Keng, Ying Ying; Kwa, Kiam Heong (2023). Contagion in social networks: On contagion thresholds, APPLIED MATHEMATICS AND COMPUTATION. 456. doi:10.1016/j.amc.2023.128121
  3. Keng, Y. Y., Kwa, K. H., & McClain, C. (2021). Convex combinations of centrality measures. Journal of Mathematical Sociology, 45(4), 195-222. doi: 10.1080/0022250x.2020.1765776
  4. Keng, Y. Y., Kwa, K. H., & Ratnavelu, K. (2021). Centrality analysis in a drug network and its application to drug repositioning. Applied Mathematics and Computation, 395, 14. doi: 10.1016/j.amc.2020.125870
  5. Chooi, W. L., & Kwa, K. (2020). Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices. Linear & Multilinear Algebra, 68(5), 869-885. doi: 10.1080/03081087.2018.1519010
  6. Chooi, W. L., & Kwa, K. H. (2020). ADDITIVE MAPS ON RANK K BIVECTORS. Electronic Journal of Linear Algebra, 36, 847-856.
  7. Chooi, W. L., Kwa, K. H., & Tan, L. (2020). Commuting maps on rank k triangular matrices. Linear & Multilinear Algebra, 68(5), 1021-1030. doi: 10.1080/03081087.2018.1527281
  8. Chooi, W. L., Kwa, K. H. (2019). Additive maps of rank r tensors and symmetric tensors. Linear Multilinear Algebra, 67(6), 1269-1293. doi:10.1080/03081087.2018.1451477
  9. Chooi, W. L., Kwa, K. H., Tan, L. Y. (2019). Commuting maps on invertible triangular matrices over F-2. Linear Algebra and Its Applications, 583, 77-101. doi:10.1016/j.laa.2019.08.023
  10. Ali, Y. E. M., Kwa, K. H., Ratnavelu, K. (2017). Predicting new drug indications from network analysis. International Journal of Modern Physics C, 28(9), 19. doi: 10.1142/s0129183117501182
  11. Chooi, W. L., Kwa, K. H., Lim, M. H. (2017). Coherence invariant maps on tensor products. Linear Algebra and Its Applications, 516, 24-46.
Others
  1. Chooi, W. L., Kwa, K. H., & Lau, J. ( 2016). A note on classical adjoint commuting linear maps of tensor products of matrices. Linear and Multilinear Algebra, 64(4), 745-766.
  2. Teh, W. C., & Kwa, K. H. (2015). Core words and Parikh matrices. Theoretical Computer Science, 582, 60-69.
  3. Chooi, W. L., Kwa, K. H., Lim, M. H., & Ng, Z. C. (2014). Linear spaces and preservers of bounded rank-two per-symmetric triangular matrices. Electronic Journal of Linear Algebra, 27, 619-651.
  4. Kwa, K. H. (2012). Differential geometric analysis of radiation-particle interaction. Journal of Physics A: Mathematical and Theoretical, 45(10), 105203.
  5. Bier, T., & Kwa, K. H. (2002). Perfect Clar structures and 3-homogeneous simplicial complexes. Topology and its Applications, 124(1), 171-184.