Morphological observation of two species of *Pseudo-nitzschia* (Bacillariophyceae)

Hong-Chang Lim¹, Po-Teen Lim¹*, Suriyanti Nyun Pau Su¹, Yuichi Kotaki² and Chui-Pin Leaw³

¹ Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Malaysia
² School of Fisheries Science, Kitasato University, Japan
³ Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Malaysia

Received 5 December 2009; accepted 21 November 2011

Abstract — About one third of the species in the genus *Pseudo-nitzschia* has been known to produce domoic acid, which is responsible for amnesic shellfish poisoning, resulting in human intoxication and the death of marine fauna. Precise identification to species level was done based on ultrastructure of frustules marking, which includes fibulae, striae, poroids and central interspace, as well as the cell dimensions. In this study, detail morphological observation of field samples and clonal cultures of *Pseudo-nitzschia* from estuarine waters in Kuching, Samariang Batu, Santubong and Muara Tebas was carried out using electron microscopy (SEM and TEM). Diatom cells were treated with acid to remove organic cellular contents before observation under SEM and TEM. Two morphotypes were observed from these three locations. One morphotype possesses a rectangular valve shape, the apical and transapical axis of 31.9–36.8 μm and 2.6–3.0 μm, respectively, with 21–25 fibulae and 21–24 striae in 10 μm. The other morphotype shows linear to lanceolate cell shape with the apical axis of 67.2–79.9 μm and the transapical axis of 3.0–3.5 μm. Numbers of fibulae and striae in 10 μm are 12–13 and 11–14, respectively. Central interspace is absent in both morphotypes. Based on the ultrastructure, the two morphotypes of *Pseudo-nitzschia* is designated as *P. brasiliana* and *P. pungens*, respectively.

Key words: *Pseudo-nitzschia, Pseudo-nitzschia brasiliana, Pseudo-nitzschia pungens, amnesic shellfish poisoning, Malaysia*

Introduction

Pseudo-nitzschia H. Peragallo is one of the most common diatom genera among marine phytoplankton and it is cosmopolitan as it can be found in polar, temperate, subtropical and tropical areas worldwide (Hasle 1972, Kaczmarska et al. 1986, Fryxell et al. 1991). Several *Pseudo-nitzschia* species had been reported to produce neurotoxin domoic acid (DA). Blooms of *Pseudo-nitzschia* in natural water may result in bioaccumulation of toxin in marine ecosystem, food web and thereby affecting marine mammals, seabirds and potentially humans (Bates et al. 1989, Work et al. 1993, Scholin et al. 2000).

Pseudo-nitzschia has received much more attention since the first occurrence of intoxication at Prince Edward Island, Canada in 1987 which caused illness of approximately 100 people while 4 patients died as a result of amnesic shellfish poisoning (ASP) after they consumed contaminated mussels (blue mussel, *Mytilus edulis*) (Perl et al. 1987). It was the first awareness of toxin producing diatoms (Bates et al. 1989).

Several species of *Pseudo-nitzschia* have been reported to produce neurotoxin domoic acid. These species include *P. australis, P. calliantha, P. cuspidata, P. delicatissima, P. fraudulenta, P. galaxiae, P. heimi, P. multiseries, P. multistriata, P. pungens, P. pseudodelicatissima, P. seriata* and *P. turgidula* (Perl et al. 1987, Hasle et al. 1996, Bargu et al. 2002, Lundholm et al. 2003, Bill et al. 2005). The focus of this study is to report the presence of *P. brasiliana* and *P. pungens* for the first time for Sarawak waters based on their morphological data.

Materials and Methods

Sampling and clonal cultures

Plankton samples were collected fortnightly from estuarine waters of Samariang Batu, Santubong and Muara Tebas, Sarawak from August to December 2008 using a 20 μm mesh plankton net (Fig. 1). The phytoplankton net samples were sent back to the laboratory and examined under Olympus IX51 inverted light microscope. Single chain of cells identified as *Pseudo-nitzschia* spp. was isolated with a micro-Pasteur pipette and transferred into 24-well microplates. The clonal cultures of *Pseudo-nitzschia* spp. were established in sterile SWII medium (Iwasaki 1961) with enrichment of silicate (pH adjusted to 7.8–7.9). Natural seawa-
ter with 30 psu was used as medium base. Cultures were maintained at 25°C, light intensity of 200 μmol photon m⁻² s⁻¹ with 12:12 hour light: dark photoperiod.

Light microscopy

Morphology of *Pseudo-nitzschia* from natural samples and clonal cultures was observed under light microscopy using phase contrast optic. A drop of each culture samples was transferred to a slide with cover slip and observed under a Nikon Eclipse 80 compound microscope with a Digital Sight DS-L1 camera. The percentage of cell ends overlap was recorded. The identification of *Pseudo-nitzschia* spp. using light microscopy was attempted on general features which include cell length and shape (Trainer and Suddleson 2005).

Electron microscopy

Clonal cultures of *Pseudo-nitzschia* spp. at stationary phase with cell density exceeding 10⁴ cells L⁻¹ were harvested through centrifugation. Cells were treated with one drop of saturated KMnO₄ solution for 15 min, followed by addition of concentrated HCl (1 ml) for 30 min to remove all the organic matters (Sibel et al. 2002). Mixtures were then rinsed several times with distilled water to remove the remaining salt and acid. The acid cleaned materials were then examined under TEM JEM—1230 (JEOL DATUM LTD) at an accelerating voltage of 80 kV with beam current at 11.2 μA (57 %).

For SEM observation, a few drops of the acid-washed cells slurry were pipetted and filtered on track-Etch membrane filter paper (0.2 micron pores size) using vacuum-manifold, dried in oven, mounted onto aluminum stubs and sputter coated with gold palladium by auto fine coater. Specimens were examined under a JSM—6390LA (JEOL DATUM LTD) scanning electron microscope with an accelerating voltage of 10 kV.

Morphometric characteristics

The cells identified as *Pseudo-nitzschia* were examined for several characteristics under the electron microscope including the width and length of the valve, numbers of fibulae and striae in 10 micron, number of poroids in 1 micron and number of row of poroids. About 30 valves from each specimen/strain were randomly selected and morphometric measurements were performed.

Results

Two species of *Pseudo-nitzschia*, *P. brasiliiana* and *P. pungens* were found and documented for the first time in Malaysia based on detailed morphological observation (Table 1). Here we describe the detailed morphological features of the two species based on natural samples and clonal cultures of *P. brasiliiana* (PnSm20) and *P. pungens* (PnMt45).

Pseudo-nitzschia brasiliiana (Lundholm) Hasle et Fryxell 2002

The appearances of the cells are symmetric in valve view with slight tapering towards the broadly rounded tips (Fig. 2A–C). The cells are interconnected with 1/10 of cell overlap into a motile chain. The apical axis is 31.9–36.8 μm and the transapical axis is 2.6–3.0 μm. *P. brasiliiana* have equal number of fibulae and striae in 10 micron, i.e., 21–25
Table 1. Morphometric data recorded under TEM and SEM for two *Pseudo-nitzschia* species observed in Sarawak waters compared with literature data. Numbers in square brackets indicate number of cells used for measurements.

<table>
<thead>
<tr>
<th>Species</th>
<th>Valves</th>
<th>Fibula</th>
<th>Poroid</th>
<th>Cell overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (μm)</td>
<td>Width (μm)</td>
<td>Number in 10 μm</td>
<td>Central interspace</td>
</tr>
<tr>
<td>P. brasiliana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazilian</td>
<td>30–49</td>
<td>2.0–3.4</td>
<td>20–26</td>
<td>absent</td>
</tr>
<tr>
<td>Spanishb</td>
<td>34–39</td>
<td>2.3–3.3</td>
<td>22–27</td>
<td>absent</td>
</tr>
<tr>
<td>P. pungens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAc</td>
<td>96–160</td>
<td>2.0–4.0</td>
<td>10–16</td>
<td>absent</td>
</tr>
<tr>
<td>Irelandd</td>
<td>61–156</td>
<td>2.2–5.4</td>
<td>10–16</td>
<td>absent</td>
</tr>
<tr>
<td>Spanishb</td>
<td>70–156</td>
<td>2.2–4.8</td>
<td>9–13</td>
<td>absent</td>
</tr>
</tbody>
</table>

References: a Villac et al. (2005), b Quijano-Scheggia et al. (2008), c Sterh et al. (2002), d Cusack et al. (2004)

Fig. 2. *Pseudo-nitzschia brasiliana*, PnSm20, isolated from Kuching. (A–D) Scanning electron micrographs. (A) Acid cleaned valve showing fibulae and striae, scale bar, 10 μm. (B–C) Two end of one valve, broadly rounded apices, scale bar, 1 μm. (D) Central part of the valve showing absent of central interspace, scale bar, 1 μm. (E–F) Transmission electron micrographs. (E) Valve slightly tapering towards the tip, scale bar, 1 μm. (F) Close-up of valve showing row of poroids in striae, scale bar, 0.5 μm.
and 21–24 respectively. Striae consist of two rows of poroids with 9–10 poroid in one micron (Fig. 2F). Central interspace is not present (Fig. 2D). *P. brasiliana* belongs in the *delicatissima*-group with valve width less than 3 μm.

Pseudo-nitzschia pungens (Grunow ex P.T.Cleve) Hasle 1993

The cells of *P. pungens* are linear to lanceolates, symmetric along the apical axis and pointed ends in girdle and valve view. The apical and transapical axis for the valve is 67.2–79.7 μm and 3.0–3.5 μm, respectively. In this species, central interspace is absent (Fig. 3A–C). The numbers of striae and fibulae in 10 micron are 13–14 and 12–13, respectively. Consistently, two rows of round poroids occur in each stria and poroids are spaced at 3–4 per one micron (Fig. 3D–F). The hymen is round, simple without any perforation (Fig. 3G–H). The overlap of cell ends is approximately 1/4 of the cell length. *P. pungens* belongs in the *seriata*-group with valve width more than 3 μm.
Discussion

Pseudo-nitzschia brasiliana and P. pungens are reported for the first time in Sarawak coastal waters. The species have previously been reported in other parts of the world (Hasle et al. 1996, Sterh et al. 2002, Cusack et al. 2004, Villac et al. 2005, Quijano-Scheggia et al. 2008, Turrell et al. 2008). In addition, this study contributes to the regional check-list of harmful or potentially harmful algae species in Malaysian waters.

The two species showed some similarity in morphology. Both species showed absence of large central interspace, simple hymen without perforation and two rows of poroids positioned close to the interstriae in striae. However, several other features such as number of fibulae and striae in 10 micron, the width, length and shape of valves differed and could be used for differentiating the two species from each other.

P. brasiliana is very similar to P. americana in terms of the cell features. According to Larsen and Nguyen (2004), P. americana does not form colonies, while P. brasiliana makes colonies in the form of chain cell. P. brasiliana has approximately same number of interstriae and fibulae in 10 μm and the interstriae are regularly spaced, while P. americana has more interstriae than fibulae in 10 μm (26–31 and 18–24) (Lundholm et al. 2002). P. brasiliana can be distinguished from other species in delicatissima-group, which lacks central interspace, by the two rows of poroids and the equal number of fibulae and striae. P. cf. granii, P. micropora and P. multiseries have similar size in terms of valve length and valve width, but they have very characteristic cell shapes, fibulae and interstriae (Quijano-Scheggia et al. 2008, Larsen and Nguyen 2004).

P. pungens differs evidently from P. australis and P. multiseries in terms of valve width and poroids and rows of poroids, even though they are quite similar to each other in a few features. According to Cusack et al. (2004), P. australis has wider transapical axis (5.3–8.0 μm) and about 4–5 poroids in 1 μm, whereas P. pungens is narrower (3.0–3.5 μm) and has 3–4 poroids in 1 μm. These two features distinguish P. pungens from P. australis, as the other features of P. australis more or less resemble P. pungens which has 15–19 striae and fibulae in 10 μm, two rows of poroids, no large central interspace and 1/4 cell overlap (Turrell et al. 2008). P. pungens is very similar to P. multiseries, but both can be distinguished by the number of poroids in 1 μm and rows of poroids. P. multiseries has 5–6 poroids in 1 μm and 4–5 rows of poroids in each striae, while P. pungens has 3–4 poroids in 1 μm and 2 rows of poroids in each striae (Hasle et al. 1996). P. pungens can be distinguished from other species in seriata-group, which do not possess large central interspace, by 3–4 poroids in 1 μm, 2 rows of poroids and narrower valve width. Even though P. australis, P. multiseries and P. seriata might have the characteristic of equal number of striae and fibulae, they are wider in valve width and different in terms of poroids and rows of poroids (Cusack et al. 2004, Kaczmarska et al. 2005).

Although most species of marine diatoms are harmless, a few produces neurotoxin domoic acid and causes illness and even death to marine mammals, marine birds, and sometimes even humans (Scholin et al. 2000). Pseudo-nitzschia comprises both toxic and non-toxic species (Bates 2000). P. brasiliana is non-toxic, while P. pungens produced low level of domoic acid. The strains found in Kuching were negative in production of domoic acid based on High Performance Liquid Chromatography (HPLC) analyses (Lim et al., 2010). However, we cannot conclude that they are non-toxic, as different culture conditions may change the toxin production mechanisms (Smith et al. 1990, Bates et al. 1991). Further toxin analysis on clonal cultures of these species at difference growth conditions is underway.

Acknowledgements

We thank Ting Woci, Amin Mangi and Besar Ketol for their assistance on TEM and SEM. This study was supported by the Malaysian Government through MOHE FRGS, MOSTI Science Fund and International Foundation of Science (IFS), and by the Core University Program of the Japan Society for the Promotion of Science (JSPS).

References

