Development of an instructional model for higher order thinking in science among secondary school students: a fuzzy Delphi approach

G. A. M. Saido, S. Siraj, D. DeWitt & O. S. Al-Amedy

To link to this article: https://doi.org/10.1080/09500693.2018.1452307

Published online: 21 Mar 2018.

Article views: 39

View related articles

View Crossmark data
Development of an instructional model for higher order thinking in science among secondary school students: a fuzzy Delphi approach

G. A. M. Saidoa, S. Sirajb, D. DeWittb and O. S. Al-Amedyc

aBasic Science Department, College of Medicine, University of Duhok, Duhok City, Kurdistan Region, Iraq; bDepartment of Curriculum & Instructional Technology, Faculty of Education, University Malaya, Kuala Lumpur, Malaysia; cRapporteur of Nursing Department, College of Nursing, University of Duhok, Duhok City, Kurdistan Region, Iraq

ABSTRACT

It is important for science students to develop higher order thinking (HOT) so that they can reason like scientists in the field. In this study, a HOT instructional model for secondary school science was developed with experts. The model would focus on reflective thinking (RT) and science process skills (SPS) among Grade 7 students. The Fuzzy Delphi Method (FDM) was employed to determine consensus among a panel of 20 experts. First, semi-structured interviews were conducted among the experts to generate the elements required for the model. Then, a questionnaire was developed using a seven-point linguistic scale based on these elements. The defuzzification value was calculated for each item, and a threshold value (d) of 0.75 was used to determine consensus for the items in the questionnaire. The alpha-cut value of >0.5 was used to select the phases and sub-phases in the model. The elements in the model were ranked to identify the sub-phases which had to be emphasised for implementation in instruction. Consensus was achieved on the phases of the HOT instructional model: engagement, investigation, explanation, conclusion and reflection. An additional 24 learning activities to encourage RT skills and SPS among students were also identified to develop HOT skills in science.

ARTICLE HISTORY

Received 28 May 2017
Accepted 11 March 2018

KEYWORDS

Higher order thinking; Fuzzy Delphi Method; reflective thinking; science process skills; instructional model

INTRODUCTION

Science as an inquiry involves reflection on one’s experiences when reasoning about a phenomenon. The process of scientific inquiry and reasoning produces new scientific knowledge (Gyllenpalm, Wickman, & Holmgren, 2010). Scientific inquiry has been defined as a systematic approach used by scientists in finding the answers to questions about a certain phenomenon (Lederman, 2004). It involves the use of the science process skills (SPS) for observation, measurement, experimentation, and reasoning. However, scientific inquiry has often been referred to a set of skills to be learned through experimental research, using the manipulation of variables to determine causal relationships (Gyllenpalm et al., 2010). This view of scientific inquiry neglects the...