Improving the performance of electrical duty-cycle division multiplexing with optimum signal level spacing

Ghafour Amouzad Mahdiraji a,⁎, Ahmad Fauzi Abas b

a Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Photonics and Fiber Optic Systems Laboratory, Centre of Excellence for Wireless and Photonics Networks, Engineering and Technology Complex, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

ARTICLE INFO

Article history:
Received 28 December 2010
Received in revised form 2 December 2011
Accepted 2 December 2011
Available online 17 December 2011

Keywords:
Optical fiber communication systems
Multiplexing techniques
Duty-cycle division multiplexing (DCDM)
Amplitude distribution controller
Dual-drive Mach-Zehnder modulator (DD-MZM)
Bias voltage optimization

ABSTRACT

Performance optimization of 3×10 Gbps conventional electrical-duty-cycle division multiplexing (C-E-DCDM) technique is investigated. It is shown that controlling signal level spacing can optimize its performance. Two level spacing optimization techniques, one in electrical domain and another in optical domain are examined. In general, performance of the C-E-DCDM is improved significantly using both approaches. The results show by optimization, an improvement of around 5.5 dB can be achieved for the C-E-DCDM in terms of receiver sensitivity and optical signal-to-noise ratio using both electrical and optical methods. However, chromatic dispersion tolerance in one of the optimization approaches is degraded by around 34 ps/nm for negative dispersion, while the positive dispersion tolerance improved compared to the C-E-DCDM.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Wavelength division multiplexing (WDM) is becoming as the main transmission technique for long-haul optical fiber communication systems today [1–3]. Novel modulation formats [4], multiplexing techniques [5], multilevel signaling [6], dispersion management [7], forward error correction [8], narrow optical filtering [9], pulse shaping [10], and signal level spacing [11] have been used to achieve a better transmission performance and a higher capacity.

Recently, duty-cycle division multiplexing (DCDM) is proposed to multiplex multiple users per WDM channel [12–14]. The technique operates based on return-to-zero (RZ) duty-cycle, where signals of different users are signed with different percentage of duty-cycle. Then, signals with different duty-cycles are multiplexed or added together in the same time to form a multilevel step down shape signal. Using this technique, spectral width of RZ-time division multiplexing (RZ-TDM) is reduced. For example, 3×10 Gbps conventional RZ-TDM (RZ with 50% duty-cycle) signal has null-to-null modulation spectral width of 120 GHz, whereas, 3×10 Gbps DCDM signal has 80 GHz [13,15]. This is because n-channel DCDM multiplexed symbol is divided into n + 1 slots, where the shortest pulse has a duration of 1/(n + 1) seconds for the case of uniformly duty-cycle distribution. However, in n-channel RZ-TDM, the multiplexed symbol is divided into 2n slots (for the case of bit 1) where the shortest pulse width is 1/(2n) seconds [15]. In addition, instead of one impulse transition on spectrum of RZ signal, n-channel DCDM provides n numbers of impulse transitions in its spectrum. Considering the impulse with the lower frequency, which is equal to the symbol rate, the data and clock recovery system, and sampling process can be performed at the frequency equal to the symbol rate. Furthermore, due to the existence of only one rising edge transition per DCDM multiplexed symbol, which is located at the beginning of each symbol; the technique facilitates the symbol level synchronization, where the beginning of each symbol can be simply determined by detecting the rising edges of the received signals. Thereby, extra overhead bits required in TDM for symbol level synchronization can be neglected when DCDM is implemented. Similar to TDM, DCDM multiplexer can be designed in both optical domain (refer to O-DCDM) [15] and electrical domain (refer to E-DCDM) [12], however, in both cases the demultiplexing process performs only in the electrical domain. In addition, E- and O-DCDM signals can tolerate higher chromatic dispersion in comparison to RZ signal due to smaller spectral width as explained above; however, they suffer from the low receiver sensitivity and optical signal-to-noise ratio (OSNR) due to multiple signal levels. The O-DCDM performs slightly better than the E-DCDM, in terms of receiver sensitivity and OSNR; however, it required one intensity modulator per multiplexing user. This makes the transmitter of the O-DCDM more costly relative to the E-DCDM, which can...
multiplex any number of users with one analog amplitude modulator (AM). Thus, this paper presents an investigation on performance optimization and enhancement of the E-DCDM; however, performance comparison of the E-DCDM against the O-DCDM is not within the scope of this paper.

2. Methodology

Fig. 1(a) shows example of the conventional E-DCDM (C-E-DCDM) output signal for three users system. As shown in the figure, the signal level is spaced equally between different slots. The equally-spaced signal level is optimum only for the case of thermal noise, where the noise is not intensity dependent. However, since optical amplifiers are used in the system, the noise is intensity dependent. This means that the signals with higher power level experience higher noise or signal variations as compared to the one with the lower power. This effect is shown in Fig. 1(b), which represents the eye diagram of the 3-user C-E-DCDM. This eye diagram is obtained after passing the DCDM signal over transmission system with optical amplifiers. Considering the quality of the received signal, the eyes located in different levels experienced different Q-factor. Q-factor in this study is calculated for each eye individually by considering each of them as a binary signal eye diagram using [16]

\[Q_{k,j} = \frac{\mu_{ij} - \mu_{i-1j}}{\sigma_{ij} + \sigma_{i-1j}} \]

where \(\mu_{ij} \) and \(\sigma_{ij} \) respectively represent the mean and standard deviation of signal at level \(i = 1, 2, \) and \(3 \) at sampling point \(j = 1, 2, \) and \(3 \); and \(Q_{k,j} \) is the Q-factor of the eye located at the row \(k \), which is located between level \(i \) and \(i - 1 \), and sampling point \(j \). As shown in the second row of Table 1, the eyes located in the lower level (eyes number 3, 5, and 6 based on Fig. 1(b)), have higher Q-factor of around 14.3 in comparison to the Eye1, which has the worst Q-factor of around 5.59. This difference causes different performance between E-DCDM’s users. Thus, optimizing the level spacing becomes necessary. In this paper, two methods for the optimum level spacing determination, one electrical and the other optical, are examined. The optical method is based on dual-drive Mach–Zehnder modulator (DD-MZM) and the electrical approach is based on a mathematical analysis as discussed in the following section.

3. Simulation setup

Simulation setup of the C-E-DCDM is reported in Ref. [12]. Here, a small modification at the transmitter side is performed to optimize the signal level spacing. Fig. 2 shows the simulation setup used in this study for three-user system. The simulation is performed by using OptiSystem and Matlab. In this setup, User 1 (U1) to U3, each with 10 Gbps, are curved with three RZ modulators. For fair comparison, pseudo-random bit sequence (PRES) used in this study is set at 2\(^{10}\)−1, which is similar to the C-E-DCDM reported in Ref. [12]. The electrical RZ pulse generators are set to produce rectangle shape pulses with different duty-cycles and exponential rising and falling edge as

\[E_{RZ}(t) = \begin{cases} 1-e^{-(t/t_f)}, & 0 \leq t < t_1 \\ 1, & t_1 \leq t < t_2 \\ e^{-(t/t_f)}, & t_2 \leq t < T \\ 0, & T \leq t \end{cases} \]

where \(t_c \) and \(t_f \) are the rise and fall time coefficient, respectively. \(t_1 \) and \(t_2 \), together with \(c_r \) and \(c_f \), are determined to generate pulses with the exact values of rise time and fall time. \(t_c \) is the duty-cycle duration, and \(T \) is the bit period. In this study, the rise time and fall time are set at 5\% of the bit period. For simplicity, the duty-cycle is uniformly distributed between different channels, where RZ1, RZ2 and RZ3 are fixed at 25\%, 50\%, and 75\% duty-cycles, respectively. Output of the RZ modulators are then synchronously multiplexed using an electrical adder.

In the C-E-DCDM, the multiplexed signals are modulated over a laser diode (LD) signal by using an analog amplitude modulator (AM). As mentioned earlier, the signal produced by the C-E-DCDM is a step down multilevel signal with equal level spacing as shown in Fig. 1(a and b), which is not optimized especially when optical amplifiers are used in the system.

In this study, for example, two approaches one in electrical and the other in the optical domain are used to optimize the level spacing of the C-E-DCDM. The objective of the paper is to show that the performance of the C-E-DCDM can be improved by using different approaches either in electrical or optical domain.

In the electrical method (EM), the equation \(y(t) = x(t) \) is used to control the signal level spacing, where \(x(t) \) is the signal with equal level spacing output from the multiplexer shown in Fig. 2. \(m \) is considered as an coefficient that controls the signal level spacing. \(y(t) \) is the desired signal whose level spacing is modified according to the \(m \) value. Signal \(y(t) \) is then externally modulated over a distributed feedback (DFB) laser with 10 MHz linewidth that operates at 1550 nm, using an ideal AM. The analog modulator is used because

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-factors for Eyel to 6 for C-E-DCDM, EM, and OM at BER 10(^{-7}).</td>
</tr>
<tr>
<td>Q-Eye1</td>
</tr>
<tr>
<td>E-DCDM-EM</td>
</tr>
<tr>
<td>E-DCDM-OM</td>
</tr>
</tbody>
</table>

Fig. 1. Signal level spacing (left) and eye diagrams (right) for, (a and b) C-E-DCDM, (c and d) EM, and (e and f) OM.
it provides an optical output signal $O_{\text{out}}(t)$, with the same level spacing format as the electrical input signal $y(t)$ as follows:

$$O_{\text{out}}(t) = O_{\text{in}}(t) \sqrt{(1 - MI) + MI \cdot y(t)}$$

(3)

where $O_{\text{in}}(t)$ is the optical input signal (here the LD signal). MI is the modulation index between 0 and 1, which in this study is fixed at 1. In this equation, the electrical input signal is normalized between 0 and 1.

On the other hand, for optical method (OM), a multiple-quantum-well based DD-MZM [17–19] is used to control the signal level spacing [11]. In this case, block (b) represented by a discrete line in Fig. 2 replaces the block (a). In this method, the DD-MZM consists of an input Y-branch splitter, two arms with independent drive electrodes, and an output Y-branch combiner. The optical carrier signal is split into two arms of the interferometer from the input Y-branch. The on- and off-state is achieved when there is constructive (no phase shift) and destructive (π radian phase shift) interference between the two signals at the output Y-branch. In a good approximation, the output signal from the modulator is the sum of the fields at the output of the two arms. The optical output signal (O_{out}) from a modulator with the same input and output Y-branch splitting ratio is given by [17–19]

$$O_{\text{out}}(V_1, V_2) = \frac{E_0}{1 + S_r} \left[e^{-\Delta \alpha_i(L)/2} e^{-i\Delta \beta L} + e^{i\Delta \beta L} e^{-i\Delta \alpha_i(L)/2} \right]$$

(4)

where E_0 is the input optical signal to the modulator; $S_r = P_1/P_2$ is the Y-branch power splitting ratio; $0.5\Delta \alpha_i$ is the attenuation constant; $\Delta \beta$ is the phase constant; L is the interaction length of the modulator arm; ϕ_0 is zero radians for a conventional modulator and π radian for a phase-shift modulator; V_1 and V_2 are the voltages applied to arms 1 and 2, respectively; I is the intensity of the optical signal; ϕ is the phase. The V_i (for $i = 1, 2$) is defined as

$$V_i(t) = V_{bi} + V_{\text{mod},i \cdot 2} \cdot \nu(t)$$

(5)

where V_{bi} is the bias voltage; $V_{\text{mod},i \cdot 2}$ is the peak-to-peak modulation voltage of the input signal applied on arms 1 and 2; and $\nu(t)$ is the input modulation waveform with a peak-to-peak amplitude of one and average value of zero. Since voltage of the input modulating waveform ($\nu(t)$) is considered to be normalized, thus, the peak-to-peak magnitude of the input modulation waveform applied on arms 1 and 2 of the modulator can be changed by $V_{\text{mod},i \cdot 2}$. Fig. 3 illustrates the dependency of the absorption ($\Delta \alpha_i$) and phase ($\Delta \beta$) of the optical signal on applied voltage for π phase-shift modulator. For DD-MZM in this study, $\phi_0 = \pi$ radian and $L = 600 \mu m$ are considered. The model also utilized a dual-drive (push–pull) modulation, where $\Delta V_1 = -\Delta V_2$ [17]. Thus, in this study, the level spacing is controlled by changing the parameters of the DD-MZM, namely bias voltages (V_{bi} and V_{bi}), the voltage of modulating signal applied on arm 1 and 2 ($V_{\text{mod}1,2}$), and the splitting ratio (S_r).

The modulated signal (DD-MZM or IM) is then transmitted over the transmission link that include a booster and pre-amplifier that are based on Erbium doped fiber amplifier (EDFA) with 4 dB noise figure. An optical attenuator between the booster and pre-amplifier is used for back-to-back receiver sensitivity and OSNR measurements. Standard single mode fiber (SMF) is used before the optical attenuator for chromatic dispersion tolerance measurement. The received signal is then detected with a p-i-n photo detector (PD) followed by a low-pass filter (LPF). In this simulation, the PD responsivity is set at 0.8 A/W, the dark current is 10 nA, and the thermal noise power spectral density level is 10 $^{-20}$ W/Hz. In general, all the noises that are considered in the simulation include thermal noise, shot noise, and the signal-amplified spontaneous emission (ASE) noise. The gain of the pre-amplifier before PD is kept at a value so that the output is lower than the PD maximum power. The noise from the PD is mitigated using the electrical Gaussian LPF with transfer function $H(f)$ of [20]

$$H(f) = \alpha \exp \left(-0.5 \ln 2 \left(\frac{f}{B} \right)^{2N} \right)$$

(6)

where α is the insertion loss, B is 3-dB bandwidth of the filter, N is the filter order, and f is the signal frequency. In this simulation, α is considered to be minimum (0 dB), B is set at 30 GHz, and N is 1. To compare performance of these systems against the C-E-DCDM reported in Ref. [12], the optical band-pass filter (OBPF) is left out from the simulation setup. However, performance of the system is expected to be improved by using OBPF. The demultiplexing process is performed similar to the C-E-DCDM [12], where using a clock recovery circuit, 10 GHz clock is recovered by detecting the 10 GHz impulse transition from the received signal spectrum. Then, the
received signals are sampled using three samplers each oscillating at 10 GHz, where by putting appropriate delay line, the 1st, 2nd and 3rd samplers take sample at the best point (which provides the higher Q-factor) around $T_s/8, 3T_s/8$ and $5T_s/8$ per symbol (where T_s is symbol duration), respectively. Decision and regeneration are performed by comparing every sampled value with three thresholds. Since signal of U1 is RZ with 25% duty-cycle (or pulse width of $T_s/4$), thus its data can be easily determined using information extracted from the 1st and 2nd sampling points. If the amplitude of the 1st sample is equal to the 2nd sample, bit 1 is recovered. If the amplitude of the 1st and 2nd sampling points are used in electrical approach. The result is obtained by varying the coefficient value while the optical signal-to-noise ratio (OSNR) of the system was fixed at a value close to the system required OSNR. With coefficient value $m = 1.68$, the system operates in the optimized state, where all the three users have similar BER. At this coefficient value, the optimum level spacing for the zero, first, second, and third levels relative to the maximum level are 0, 15.8, 50.6, and 100%, respectively, as shown in Fig. 1(c).

4. Results and discussion

4.1. Level spacing optimization

Fig. 4 shows the BER of 3 × 10 Gbps E-DCDM as a function of the coefficient m used in electrical approach. The result is obtained by varying the coefficient value while the optical signal-to-noise ratio (OSNR) of the system was fixed at a value close to the system required OSNR. With coefficient value $m = 1.68$, the system operates in the optimized state, where all the three users have similar BER. At this coefficient value, the optimum level spacing for the zero, first, second, and third levels relative to the maximum level are 0, 15.8, 50.6, and 100%, respectively, as shown in Fig. 1(c).

For optimizing the performance of O-DCDM using DD-MZM, first the effect of modulator splitting ratio is tested at fixed $V_{b1} = -0.5$ V and $V_{b2} = -1.5$ V as shown in Fig. 5. As illustrated, in all various splitting ratios, the minimum BER is obtained when the $V_{mod \ 1, 2}$ is around 1 V, which is equivalent to $V_{mod \ 1} = V_{b1} - V_{b2}$. At the same time, the best system performance is achieved at the splitting ratio of 1. Secondly, the effect of bias voltages on performance of O-DCDM is investigated. For this purpose, two different conditions for bias voltages are considered, where in the first case, $V_{b1} = V_{b2}$ while in the second case, the two bias voltages are independent. Considering the first condition with $V_{b1} = V_{b2}$, Fig. 6(a) shows the normalized modulator output intensity as a function of V_{b11}, while the splitting ratio is 1 and $V_{mod \ 1, 2} = 1.2$ V. The peak value of the normalized intensity due to the absorption that occurs in each arm of the modulator is less than one. As illustrated in the figure, the V_{b1} or the voltage required to obtain π radians phase shift in each arm of the modulator is around 3.35 V, which can also be observed from the phase dependent of the modulator as shown in Fig. 3. In addition, as illustrated in Fig. 6(a), the quality of O-DCDM eye diagram is changed by the change of bias voltages, while the optimum eye is around $V_{b1} = 0.6$ V (thus, $V_{b2} = -0.6$ V). By changing the input modulation voltage ($V_{mod \ 1, 2}$), the position of the optimum eye is slightly shifted accordingly as shown in Fig. 6(b). According to the result in Fig. 6(a) and the relationship observed from Fig. 5, the optimum performance in the case of for example $V_{mod \ 1, 2} = 2$ and 0.4 V is expected to be around $V_{b1} = 1$ and 0.2 V, respectively, while $V_{b2} = -V_{b1}$. For verification, the performance of O-DCDM system as a function of bias voltages and various $V_{mod \ 1, 2}$ is shown in Fig. 6(c). As illustrated in the figure, for all $V_{mod \ 1, 2}$ values, the minimum BER is obtained when $V_{mod \ 1, 2} = 0.71 - V_{b2}$. This is similar to the earlier case. In addition, all the curves at different $V_{mod \ 1, 2}$ show the same system performance. This means the optimum bias and modulation voltage can be easily achieved by satisfying the relationship, $V_{mod \ 1, 2} = V_{b1} - V_{b2}$. Considering this relationship, Fig. 6(d) shows performance of the 3-user O-DCDM system as a function of V_{b1}. The range of V_{b1} is from -1.5 to 1.5 V (or around $-0.45V_s$ to $0.45V_s$), which provides very similar and minimum BER, except at $Vb_1 = 0$ V (modulator is in off-state). The value of $V_{mod \ 1, 2}$ in this range is 3 to 3 V (or $0.9V_s$ to $-0.9V_s$), while $V_{b2} = -V_{b1}$. This is the optimum operation range of DD-MZM for 3-user O-DCDM system at the condition $V_{b1} = V_{b2}$. In specific, as illustrated in the figure, at around $V_{b1} = -0.5$ V, $V_{b2} = 0.5$ V, and $V_{mod \ 1, 2} = 1$ V (or $V_{b1} = 0.15V_s$, $V_{b2} = 0.15V_s$ and $V_{mod \ 1, 2} = 0.3V_s$), BER of the system is slightly lower compared to the other points. Thus, these bias and modulation voltages are considered as the optimum points for the condition $V_{b1} = V_{b2}$. For the second condition, where the two bias voltages are varied independently, Fig. 7 shows the effect of V_{b2} on performance of O-DCDM at different value of V_{b1}, while the $V_{mod \ 1, 2} = V_{b1} - V_{b2}$. There are several optimum points, which provides almost the same performance as compared to the optimum point in the first condition ($V_{b1} = V_{b2}$). However, BER at $V_{b1} = -1.5$ V and $V_{b2} = 1$ V (or $V_{b1} = -0.45V_s$ and $V_{b2} = 0.3V_s$) is slightly better (around 0.3 dB difference in terms of OSNR) as compared to the other points and also when compared to any points obtained in the first condition. Thus, the bias values ($V_{b1} = -1.5$ V and $V_{b2} = 1$ V) with splitting ratio of 1 and $V_{mod \ 1, 2} = 0.5V_s$ are used in this study as the optimum condition for calculating the performance of O-DCDM. At this optimum condition, signal level spacing in the O-DCDM compared to the maximum signal level is spaced around 0, 14.54, 50.01, and 100% for the zero, first, second, and third levels, respectively, as shown in Fig. 1(e).

4.2. Receiver sensitivity and OSNR

Fig. 8(a) shows the performance of 3 × 10 Gbps E-DCDM system optimized with the EM and OM, as a function of the received power. For comparison purposes, the performance of the worst user in the C-E-DCDM is presented. The receiver sensitivity is obtained by swiping the optical attenuator value (Fig. 2) and measuring the
total average power received after the attenuator by using an optical power meter. From the results, at optimum condition, in both EM and OM, all the three users show almost similar performance. Referring to BER of 10^{-9}, 30 Gbps E-DCDM required a received power of around -28.85 dBm, while around -23.4 dBm for the worst channel using the C-E-DCDM. This result confirms that using an appropriate approach, performance of the C-E-DCDM can be improved up to around 5.5 dB.

Fig. 1(b), (d), and (f) shows the eye diagram of the E-DCDM based on the conventional structure, EM, and OM, respectively. All the three eye diagrams are obtained at BER of 10^{-9}, while their received powers were set at their receiver sensitivity value. The Q-factor of Eyes 1 to 6 for all the three systems are calculated and presented in Table 1. As shown in the table, in C-E-DCDM, the Q-factor between the best eye (Eye6) and the worst eye (Eye1) varies by around 8.85. Whereas, by optimizing the signal level spacing using the EM and OM, the Q-factor variation between the best and the worst eyes is reduced to around 0.33 and 0.69, respectively. This result confirms a good level of optimization for both methods.

Fig. 8(b) shows the BER of the E-DCDM system optimized with the EM and OM, as a function of OSNR. Similar to the receiver sensitivity, the OSNR of the system is obtained by swiping the optical attenuator value. Then, the OSNR value is measured after the pre-amplifier and...
before the PD by using a WDM analyzer at a resolution bandwidth of 0.1 nm, where the OSNR is calculated by subtracting the signal spectrum peak power from the noise spectrum peak power. According to the results, in both approaches, all three users show almost similar performance. With both EM and OM showing very similar performance, OSNR in OM is slightly better than EM with only about 0.1 dB, which is negligible. At BER of 10^{-9}, the E-DCDM system optimized with OM required around 23.3 dB OSNR, which is around 5.5 dB better than the C-E-DCDM that required an OSNR of around 28.85 dB for the worst user. At this OSNR and the above mentioned receiver sensitivity, the average and peak power received by the PIN PD are around -0.11 and -7.8 dBm using the EM, and around -0.08 and -7.7 dBm using the OM, respectively. The result confirms that performance of the C-E-DCDM can be optimized and improved significantly by controlling the signal level spacing.

4.3. Chromatic dispersion tolerance

Fig. 9 shows the chromatic dispersion tolerance of 30 Gbps E-DCDM optimized with OM and EM. For comparison purpose, chromatic dispersion tolerance of the worst user in the C-E-DCDM is shown in this figure. After optimization, all three channels show almost similar performance for both EM and OM with the maximum of around ± 2 ps/nm difference between the best and the worst user at BER 10^{-9}, except U3 with 75% duty-cycle, which experiences some fluctuation. Considering performance of the worst user, 30 Gbps E-DCDM optimized with EM can tolerate around ± 93 ps/nm of the chromatic dispersion, which is almost similar to the C-E-DCDM. However, E-DCDM optimized with OM shows different dispersion tolerance in positive and negative dispersion, which are around $+100$ and -59 ps/nm, respectively.

5. Conclusion

Optimization of 3×10 Gbps E-DCDM system has been successfully reported. It is shown that controlling the signal level spacing is a key element for achieving the objective. By optimizing signal level spacing, performance of the C-E-DCDM is improved significantly in both the optical and electrical approach. However, dispersion tolerance is slightly reduced relative to the C-E-DCDM. The result confirms the effect of signal level spacing optimization technique in optimizing the performance of the C-E-DCDM. This finding will open up new efforts in pushing towards a better E-DCDM transmitter and receiver design.

References

