Visual Related Analysis and Application of Saline Soil Culture Design Factors

Weiwei Wang, Yin Liu, Mohd Sayuti Bin Ab Karim and Nor Amirah binti Mohd Amran

ISSN 1975-0080
Volume 12, Number 8, 2017

International Journal of Multimedia and Ubiquitous Engineering
Vol. 12, No. 8 (2017), pp.43-54
http://dx.doi.org/10.14257/ijmue.2017.12.8.05
Visual Related Analysis and Application of Saline Soil Culture Design Factors

Weiwei Wang¹, Yin Liu¹(*Corresponding Author), Mohd Sayuti Bin Ab Karim², and Nor Amirah binti Mohd Amran²

¹Department of Industrial Design, College of Art and Design, Shaanxi University of Science & Technology, Xi’an 710021, China
²Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
liuyinsamasama@gmail.com, suqier1102@foxmail.com, mdsayuti@um.edu.my

Abstract

Saline soil culture is one of the driving forces of human civilization development. Nevertheless its spiritual heritage has not been effectively passed on. Creative product design helps culture to be widely recognized with a sense of the times, the connotation value of the product is enhanced, through which attraction towards the certain culture is expected to increase. Accordingly, this paper proposes a creative design idea based on visual related analysis for the saline soil culture. Through research on the revolutions influenced by three salt ancestors, the artifacts involved are analyzed, then the extraction of characteristic factors is performed by action verbs and other modern design methods. Eye movement tests is mainly conducted to evaluate the extracted schemes, combining with an emotional engineering method. The selected design factors are applied to a new product development. This process is validated by applying a serial tea set design.

Keywords: Saline soil culture, Design factors, Eye movement test, Kansei engineering, Design evaluation

1. Introduction

In the course of human civilization, saline soil has had special merit in casting the temperament and character of salt-boiling people and has also promoted the progress and development of society. Represented by research on well-salt in Zigong, Sichuan Province, research on the salt culture has led to many important results. The China Sea-Salt Museum, which was established in 2008 in Yancheng, Jiangsu Province, has also provided abundant data for research on the saline soil culture. For years, experts and scholars have been dedicated to studying the salt culture and have published monographs, magazines, etc., as discussed in the literature [1]. Transitional development countermeasures of saline soil agriculture in the coastal area of Jiangsu have been put forward, and soft power has been increasing continuously.

The cultural characteristics of design factors comprise a symbolic visual language that is presented in a large number of cultural forms, is strongly recognized, and can lead to perceiving a target group easily. Current research on design factors concentrates more on brand recognition. For instance Apple, Toyota and other large enterprises are involved in in-depth studies of design language, so as to enhance brand recognition and enterprise competitiveness [2]. Taking Volvo cars and Nokia products as examples, Karjalainen [3] explored the conversion from brand language to product modeling elements. Jap P McCormack et al. [4] presented shape grammar as a method to encode the key elements of a brand into heritable design language, and demonstrated the feasibility through an example of Buick front-end vehicle design. Chen and Chang [5] employed a numerical
5. Conclusion

The saline soil culture possesses rich spiritual connotations. Different degrees of research have been done to collect preliminary data on the saline soil culture. The saline soil culture has not yet been fully studied by researchers, as it is not an easy topic and it is hard to understand for most people. Besides, product categories that are closely related to people’s lives are relatively simple. Therefore, it is essential to develop effective methods to make products penetrate people's daily lives, and the saline soil culture needs to be passed on to future generations in order for them to study and develop an interest in this topic.

In this study, an attempt was made to extract pattern, shape, color and spiritual connotation factors of important artifacts from the evolution of the saline soil culture. Modern aesthetic elements were integrated and applied along with eye movement experiments and other methods to the design evaluation and design practice, so that a communication would be achieved between traditional artifacts and modern appliances. This study is expected to provide a useful way to develop a practical tool for culture creative product design. Further research can be conducted from different perspectives, such as the exploration and innovation of different product carriers and feature extraction methods, to open up a broader space for our cultural creative design industry.

Acknowledgments

The author would like to thank the subjects for their participation in the experimental study. This research was supported by Ministry of education of Humanities and Social Science project (Semantic Analysis and Design Heritage of Han-Tang Culture 14YJC760008) and Doctoral research project of Shaanxi University of Science & Technology.

References


Authors

Weiwei Wang. He received his PhD degree in industrial design in 2011. Currently he is Associate Professor of product design in College of Art and Design, Shaanxi University of Science and Technology, China. His research interests include digital product design and traditional cultural creative design. suqier1102@foxmail.com

Yin Liu. She received her BE degree in Industrial Design from Shaanxi University of Science and Technology in 2014, Shaanxi, China. She pursued his postgraduate studies in the same year till now. She studied in the Faculty of Engineering at University of Malaya, Malaysia, in 2015-2016. Her main research interest is design methodology. 329774118@qq.com; liuyinsamasama@gmail.com

Mohd Sayuti Bin Ab Karim. He obtained his Bachelor Degree in CAD/CAM Engineering from University of Malaya in 2006. He pursued his postgraduate studies in Engineering Science. He obtained his PhD in 2013 and joined the Faculty of Engineering, University of Malaya thereafter. He is a registered member of Institutional Engineering Malaysia (IEM) and a registered graduate member of Board Engineer Malaysia (BEM) since 2012.

Nor Amirah binti Mohd Amran. She is currently a Research Assistant in B. Eng (Hons) CAD/M (UM),Faculty of Engineering, University of Malaya.