CONTENTS OF ALL VOLUMES

VOLUME 1 – Finish Machining and Net-Shape Forming

Conventional Finish Machining

1.1 Factors Affecting Surface Roughness in Finish Turning MM Ratnam 1
1.2 Effect of Cutting Variables on Boring Process: A Review SA Lawal, MB Ndaliman, KC Bala, and SS Lawal 26
1.3 Finish Machining of Hardened Steel SK Choudhury and S Chinchanikar 47
1.4 Review of Gear Finishing Processes NK Jain and AC Petare 93
1.5 Robotic Polishing and Deburring Fengfeng Jeff Xi, Tianyan Chen, and Shuai Guo 121
1.6 Precision Grinding, Lapping, Polishing, and Post-Processing of Optical Glass Yaguo Li, Qinghua Zhang, Jian Wang, Qiao Xu, and Hui Ye 154

Advances in Finish Machining

1.7 Techniques to Improve EDM Capabilities: A Review H Marashi, AAD Sarhan, I Maher, and M Sayuti 171
1.8 Natural Fiber-Reinforced Composites: Types, Development, Manufacturing Process, and Measurement SM Sapuan, KF Tamrin, Y Nukman, YA El-Shekeil, MSA Hussin, and SNA Aziz 203
1.9 Effect of Electrical Discharge Energy on White Layer Thickness of WEDM Process I Maher, AAD Sarhan, and H Marashi 231
1.10 Micro-EDM Drilling of Tungsten Carbide Using Microelectrode with High Aspect Ratio to Improve MRR, EWR, and Hole Quality M Hourmand, AAD Sarhan, MY Noordin, and M Sayuti 267
1.11 Micromachining MY Ali and WNP Hung 322
1.12 Laser Machining Processes BS Yilbas 344
1.13 ELID Grinding and EDM for Finish Machining T Saleh and R Bahar 364

Finishing Process Using Net Forming

1.14 Laser Peening of Metallic Materials S Gencalp Irizalp and N Saklakoglu 408
1.15 Micro Plastic Part Filling Capabilities through Simulation and Experiment: A Case Study on Micro Gear Shape M Azuddin, Z Taha, and IA Choudhury 441
1.16 Net-Shape Microfabrication Technique by Micrometal Powder Injection Molding AA Abdullahi, N Nahar, M Azuddin, and IA Choudhury 466
1.17 Review of Miniature Gear Manufacturing NK Jain and SK Chaubey 504

VOLUME 2 – Surface and Heat Treatment Processes

2.1 Fundamentals of Heat Treating Metals and Alloys MK Banerjee 1
2.2 Hardenability of Steel AK Bhargava and MK Banerjee 50
2.3 Carburizing: A Method of Case Hardening of Steel MMA Bepari 71
2.4 Surface Hardening by Gas Nitriding K Farokhzadeh and A Edrisy 107
2.5 Laser Beam Processing for Surface Modifications BS Yilbas 137
2.6 Surface Induction Hardening J Barglik and A Smalcerz 154
2.7 Recent Advances in Mechanical Surface Treatment S Ismail, Q Ahsan, and ASMA Haseeb 171
2.8 Heat Treatment of Commercial Steels for Engineering Applications MK Banerjee 180
2.9 Heat Treatment of Tool Steels RA Mesquita, CA Barbosa, and AR Machado 214
2.10 Heat Treatment of Cast Irons I Chakrabarty 246
2.11 Thermal Treatment for Strengthening Titanium Alloys A Sinha, S Sanyal, and NR Bandyopadhyay 288
2.12 Heat Treatment of Aluminum Alloys HMMA Rashed and AKM Bazlur Rashid 337
2.13 Solutionizing and Age Hardening of Aluminum Alloys G Quan, L Ren, and M Zhou 372
2.14 Heat-Treating Copper and Nickel Alloys AK Bhargava and MK Banerjee 398
2.15 Cryogenic Treatment of Engineering Materials T Slatter and R Thornton 421

VOLUME 3 – Surface Coating Processes

3.1 Electroless Plating of Pd Binary and Ternary Alloys and Surface Characteristics for Application in Hydrogen Separation AM Tarditi, ML Bosko, and LM Cornaglia 1
3.2 Tuning of the Microstructure and Surface Topography of Hot-Dip Galvanized Coatings SMA Shibli and R Manu 25
3.3 Surface Finish Coatings P Sahoo, SK Das, and J Paulo Davim 38
3.4 Residual Stresses in Thermal Spray Coating AFM Arif, KS Al-Athel, and J Mostaghimi 56
3.5 Laser Texturing of Materials and Surface Hydrophobicity BS Yilbas 71
3.7 HVOF Coating of Nickel Based Alloys: Surface and Mechanical Characteristics BS Yilbas 96
3.8 Laser-Based 3D Printing and Surface Texturing A Selimis and M Farsari 111
3.9 Hydrophobicity and Surface Finish A Owais, M Khaled, and BS Yilbas 137
3.10 Atomizers and Finish Properties of Surface Coatings R Ray and P Henshaw 149
3.11 Gas Nitriding of H13 Tool Steel Used for Extrusion Dies: Numerical and Experimental Investigation SS Akhtar, AFM Arif, and BS Yilbas 158
3.12 Hot-Dip Galvanizing Process F Ozturk, Z Evis, and S Kilic 178
3.13 Finishing and Post-Treatment of Thermal Spray Coatings MM Verdian 191
3.14 High Velocity Oxy-Fuel Spraying and Surface Finish H Singh, M Kaur, and N Bala 207
3.15 Electroless Plating as Surface Finishing in Electronic Packaging MA Azmah Hanim 220
3.16 Hard Coatings on Cutting Tools and Surface Finish H Caliskan, P Panjan, and C Kurbanoglu 230
3.17 Topological Evaluation of Surfaces in Relation to Surface Finish P Demircioglu 243
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18</td>
<td>Evaluation of Surface Finish Quality Using Computer Vision Techniques</td>
<td>I Bogrekci and P Demircioglu</td>
<td>261</td>
</tr>
<tr>
<td>3.19</td>
<td>Effect of Surface Roughness on Wetting Properties</td>
<td>H Mojiri and M Aliofkhazraei</td>
<td>276</td>
</tr>
<tr>
<td>3.20</td>
<td>Surface Preparation and Adhesion Tests of Coatings</td>
<td>M Jokar and M Aliofkhazraei</td>
<td>306</td>
</tr>
<tr>
<td>3.21</td>
<td>Powder Metallurgical Processing of NiTi Using Spark Plasma Sintering</td>
<td>K McNamara, J Butler, AA Gandhi, and SAM Tofail</td>
<td>336</td>
</tr>
<tr>
<td>3.22</td>
<td>Spark Plasma Sintering of Lead-Free Ferroelectric Ceramic Layers</td>
<td>M Karimi-Jafari, K Kowal, E Ul-Haq, and SAM Tofail</td>
<td>347</td>
</tr>
<tr>
<td>3.23</td>
<td>Electrochemical Processing and Surface Finish</td>
<td>NK Jain and S Pathak</td>
<td>358</td>
</tr>
</tbody>
</table>

Index | | 381 |
CONTENTS OF VOLUME 1

Preface xvii
Introduction to Finish Machining and Net-Shape Forming xix

VOLUME 1 – Finish Machining and Net-Shape Forming

Conventional Finish Machining

1.1 Factors Affecting Surface Roughness in Finish Turning
MM Ratnam
1

1.2 Effect of Cutting Variables on Boring Process: A Review
SA Lawal, MB Ndaliman, KC Bala, and SS Lawal
26

1.3 Finish Machining of Hardened Steel
SK Choudhury and S Chinchanikar
47

1.4 Review of Gear Finishing Processes
NK Jain and AC Petare
93

1.5 Robotic Polishing and Deburring
Fengfeng Jeff Xi, Tianyan Chen, and Shuai Guo
121

1.6 Precision Grinding, Lapping, Polishing, and Post-Processing of Optical Glass
Yaguo Li, Qinghua Zhang, Jian Wang, Qiao Xu, and Hui Ye
154

Advances in Finish Machining

1.7 Techniques to Improve EDM Capabilities: A Review
H Marashi, AAD Sarhan, I Maher, and M Sayuti
171

1.8 Natural Fiber-Reinforced Composites: Types, Development, Manufacturing Process, and Measurement
SM Sapuan, KF Tamrin, Y Nukman, YA El-Shekeil, MSA Hussin, and SNA Aziz
203

1.9 Effect of Electrical Discharge Energy on White Layer Thickness of WEDM Process
I Maher, AAD Sarhan, and H Marashi
231

1.10 Micro-EDM Drilling of Tungsten Carbide Using Microelectrode with High Aspect Ratio to Improve MRR, EWR, and Hole Quality
M Hourmand, AAD Sarhan, MY Noordin, and M Sayuti
267

1.11 Micromachining
MY Ali and WNP Hung
322

1.12 Laser Machining Processes
BS Yilbas
344

1.13 ELID Grinding and EDM for Finish Machining
T Saleh and R Bahar
364

Finishing Process Using Net Forming

1.14 Laser Peening of Metallic Materials
S Gencalp Irizalp and N Saklakoglu
408

1.15 Micro Plastic Part Filling Capabilities through Simulation and Experiment: A Case Study on Micro Gear Shape
M Azuddin, Z Taha, and IA Choudhury
441

1.16 Net-Shape Microfabrication Technique by Micrometal Powder Injection Molding
AA Abdullahi, N Nahar, M Azuddin, and IA Choudhury
466

1.17 Review of Miniature Gear Manufacturing
NK Jain and SK Chaubey
504
PREFACE

Finish manufacturing processes are final stage processing techniques which are deployed to bring products to a stage where they are ready for marketing and putting in service. Over recent decades, a number of finish manufacturing processes have been developed by researchers and technologists. Some of these new processes have been documented and illustrated both individually and collectively in relation to application in specific areas. The advancement of tools of physics has resulted in considerable changes to these processes, and the precision with which they can be applied. The reporting of these developments are sometimes fragmentary, and this reference work provides a more connected and thorough review of these processes.

Comprehensive Materials Finishing is the primary reference source for researchers at different levels and stages in their career both in academia and industry. This reference work encompasses the knowledge and understanding of many experts into a single, comprehensive work. Containing a combination of review articles, case studies, and research findings resulting from research and development activities in both industrial and academic domains, this reference work focuses on how some of these finish manufacturing processes are advantageous for a broad range of technologies. These include applicability, energy and technological costs, and practicability of implementation. A wide range of materials such as ferrous, nonferrous, and polymeric materials are covered.

This work details the three foremost and distinct types of finishing processes: surface treatment, finish machining processes, and surface coating processes. Surface treatment refers to properties of a material being modified without otherwise changing the physical dimensions of the surface. Finish machining processes involve a small layer of material being removed from the surface by various machining type processes to render improved surface characteristics. Surface coating processes are where the surface properties are improved by adding fine layer(s) of materials with superior surface characteristics to improve the service life of the surface being coated. Each primary surface finishing process is presented in a separate volume, comprising chapters on many of the following relevant specific processes as follows:

Volume 1: Finish Machining and Net-Shape Forming: developments in conventional finish machining processes (honing, lapping, polishing, burnishing, and deburring), fine grinding, free EDM, laser finishing, electrical discharge grinding (EDG), electrochemical honing (ECH), electrochemical discharge grinding (ECDG), electrochemical grinding (ECG), electrochemical turning (ECT), micro-machining process, and high-speed machining.

Volume 2: Surface and Heat Treatment Processes: This contains aspects of heat treatments, stress relieving, annealing, normalizing, hardening, tempering, austempering, martempering, carburizing (pack, liquid, gas, and post carburizing treatments), nitriding (gas and plasma), salt bath (boriding, chromizing, cyaniding, and carbonitriding), phase transformation of the outer surface (induction, flame, laser, electron beam, and anodizing).

Volume 3: Surface Coating Processes: Plating (electroplating, alloys (bronze/brass and others), chromium, dense chromium, copper and tin, gold, silver and other precious metals, zinc and nickel, electroforming, electrolest nickel, hot dip galvanizing, selective/brush plating, surface finish coatings, air spray painting, and chemical vapor deposition (CVD)).

Finishing processes are at the core of successful production of marketable products and address recent progress in materials finishing technologies and science as well as covering recent developments in specific manufacturing processes involved with finishing of products for applications in all areas of engineering, biomedical, environmental, health and safety, and monitoring and control. The in-depth study of these finishing processes as presented in these volumes will assist scientists and engineers in the selection, design, and usage of materials, whether required in small- or large-scale uses across industries.

The initiations for this project began in 2014 and by January, 2015, I had selected the volume editors – Bekir Yilbas, Imtiaz Choudhury, and Shahjahan Mridha and we met with Gemma Tomalin, Joanne Williams, and Graham Nisbet at the Elsevier office in Oxford to finalize the table of contents and plan the project. Throughout 2015, the volume editors and I worked resolutely to select topics to be covered, invite authors, and review their manuscripts, eventually getting all content ready for production by the end of 2015. In 2016, authors returned their proof corrections and final files were produced. To create a work of this scale, the most in-depth reference ever published on materials finishing processes and surface engineering, relies on a collaboration of authors, editors, and the team at Elsevier. I would like to thank the many dedicated authors, whose contributions will be an essential reference for materials scientists and engineers. Each chapter has been reviewed by one of the volume editors, leading experts in their fields, whose knowledge and expertise have proved invaluable. I am indebted to each volume editor and their dedication to making their volume an exhaustive and relevant resource for the scientific community for many years to come. Finally, on behalf of myself and the volume editors, I would like to thank Gemma Tomalin and Joanne Williams at Elsevier for their support, cooperation, and good humor throughout this project – from the first meeting in early 2015, to the publication mid-2016.

MSJ Hashmi
Editor-in-Chief
Dublin City University, Dublin, Ireland
1.10 Micro-EDM Drilling of Tungsten Carbide Using Microelectrode with High Aspect Ratio to Improve MRR, EWR, and Hole Quality

M Hourmand, University of Malaya, Kuala Lumpur, Malaysia
AAD Sarhan, University of Malaya, Kuala Lumpur, Malaysia and Assiut University, Assiut, Egypt
MY Noordin, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
M Sayuti, University of Malaya, Kuala Lumpur, Malaysia

Copyright © 2017 Elsevier Inc. All rights reserved.

1.10.1 Introduction
1.10.2 Material Removal Processes
 1.10.2.1 Conventional Process
 1.10.2.2 Nonconventional Process
 1.10.2.3 Hybridized Process
1.10.3 EDM and Micro-EDM Processes
 1.10.3.1 Electrical Discharge Machining
 1.10.3.2 Sparking and Gap Phenomena in EDM
 1.10.3.3 Function and Types of Micro-EDM Process
 1.10.3.4 Pulse Generators/Power Supply
 1.10.3.4.1 Transistor-type pulse generator
 1.10.3.4.2 RC-type pulse generator
 1.10.3.4.3 Pulse waveform and discharge energy
 1.10.3.5 Electrode Material for EDM
 1.10.3.5.1 Copper
 1.10.3.5.2 Copper tungsten
 1.10.3.5.3 Graphite
 1.10.3.5.4 Brass
 1.10.3.5.5 Copper graphite
 1.10.3.5.6 Zinc alloys
 1.10.3.5.7 Silver tungsten
 1.10.3.5.8 Tungsten
 1.10.3.5.9 Tungsten carbide–cobalt (WC–Co)
 1.10.3.6 Electrode Material for Micro-EDM
 1.10.3.7 Dielectric Medium in EDM
 1.10.3.7.1 Mineral oil
 1.10.3.7.2 Kerosene
 1.10.3.7.3 Mineral seal
 1.10.3.7.4 Transformer oil
 1.10.3.7.5 Water-based dielectrics
 1.10.3.7.6 Powder-mixed EDM
 1.10.3.7.7 Dry EDM
1.10.4 EDM and Micro-EDM Process Parameters
 1.10.4.1 EDM Performance Measure (Machining Characteristics)
 1.10.4.1.1 MRR
 1.10.4.1.2 EWR
 1.10.4.1.3 Surface roughness
 1.10.4.2 Micro-EDM Performance Measure (Machining Characteristics)
 1.10.4.2.1 MRR
 1.10.4.2.2 EWR
 1.10.4.2.3 Overcut
 1.10.4.2.4 Surface integrity
 1.10.4.3 Various Fabrication Processes of Microelectrode
 1.10.4.3.1 WEDG
 1.10.4.3.1.1 Radial-feed WEDG
 1.10.4.3.1.2 TF-WEDG
 1.10.4.3.1.2.1 Principle of TF-WEDG
 1.10.4.3.1.2.2 Analysis of TF-WEDG
 1.10.4.3.1.3 Twin-wire EDM system
 1.10.4.3.1.4 Fabrication of microelectrode for batch production by WEDM
1.10.3.1.5 Compliant microelectrode arrays were fabricated by WEDM
1.10.3.1.6 Fabrication of series-pattern micro-disk electrode
1.10.3.2 Rotating sacrificial disk
1.10.3.3 Stationary BEDG
1.10.3.4 MBEDG
1.10.3.5 Micro-turning process
1.10.3.6 EDM of micro-rods by self-drilled holes
1.10.3.7 Reverse EDM
1.10.3.8 Hybrid process
1.10.3.8.1 Micro-turning–micro-EDM hybrid machining process
1.10.3.8.2 Self-drilled holes–TF-WEDG hybrid machining process
1.10.3.8.3 Continuous machining process of array micro-holes
1.10.3.8.4 LIGA–micro-EDM hybrid machining process

1.10.5 Prospective on Process Selection

1.10.6 Methodology
1.10.6.1 Experimental Setup
1.10.6.2 Micro-EDM of WC–Co

1.10.7 Results and Discussions
1.10.7.1 Analysis of Results on Micro-EDM of WC–Co
1.10.7.1.1 Overcut
1.10.7.1.2 MRR and EWR
1.10.7.1.3 Surface roughness
1.10.7.1.4 Micro-crack
1.10.7.1.5 Material migration

1.10.8 Conclusions

1.10.1 Introduction

According to the CRIP committee of physical and chemical processes, micro-machining is considered as one of the most fundamental technologies to manufacture and miniaturize products and parts with a dimension between 1 and 999 μm. Miniaturized products and parts are mainly used in biotechnology, information technology, environmental, medical industries, electric devices, miniaturized machines, and so on. With the recent advancements in Microelectro Mechanical System, micro-machining is being more and more popular day-by-day. A lot of studies have already been done about the fabrication of functional micro-structure and component. Basically, micromachining has been classified into three processes including conventional material removal processes, non-conventional material removal processes, and hybridized processes.

1.10.2 Material Removal Processes

1.10.2.1 Conventional Process

Mechanical force and energy are required for conventional material removal processes where shear force removes the material. Shear refers to simple machining process by physical contact between material and cutting tools. Traditional material removal processes such as micro-turning, micro-milling, micro-drilling, and grinding use a single-point diamond cutter or very fine-grit-sized grinding wheels to produce machine parts. They can be used for machining of the most of the materials; for example, ferrous and non-ferrous metals, semiconductors, and plastics. The products with any shape such as flat surfaces, arbitral curvature, long shaft, and so on can be fabricated by conventional material removal processes. Figure 1 presents the experimental setup for micro-turning, micro-milling, and micro-grinding.

1.10.2.2 Nonconventional Process

In the nonconventional process, other sources of energy such as light energy, spark energy, vibration energy, electrolysis energy, energy beams (laser beam, electron beam, or ion beams), mechanical energy (based on erosion mechanism), etc., are used to remove the material. Techniques based on energy beams (beam-based micromachining) or solid cutting tools (tool-based micromachining) can be used for micro-machining. There are some constraints due to poor control of 3D structures, low material removal rate (MRR) and low aspect ratio in the beam-based micro-machining by using the laser beam, ion beams, or electron beam. Furthermore, special facilities are required for these processes and the maximum achievable thickness is relatively small. Also, due to its quasi-three-dimensional structure, there are some limitations in using photolithography on silicon substrates includes its low aspect ratio and limitation of the work material. High aspect ratio of three-dimensional submicron structures by very high form accuracy can be produced deep X-ray lithography using synchrotron radiation beam (LIGA) process and focused-ion beam machining process. While the special facilities are required for these processes and the
Micro-EDM Drilling of Tungsten Carbide Using Microelectrode with High Aspect Ratio

Figure 1 (a) Micro-turning setup,10 (b) Close view of the micro-milling experimental setup,11 (c) Micro-grinding system setup.12,13

1. Piezoelectric Dynamometer
2. Encoder drive
3. Variable frequency drive
4. Servo motor with encoder
5. Spindle with inbuilt motor
6. Micrometer
7. Coated carbide tool
8. Tool holder
9. Dial gauge

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Units</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corner Geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating</td>
<td>-</td>
<td>MS-(AlTi)N</td>
</tr>
<tr>
<td>Cutting diameter</td>
<td>D_1</td>
<td>[mm]</td>
</tr>
<tr>
<td>Shank diameter</td>
<td>D_4</td>
<td>[mm]</td>
</tr>
<tr>
<td>Overall length</td>
<td>L_1</td>
<td>[mm]</td>
</tr>
<tr>
<td>Length of cut</td>
<td>L_c</td>
<td>[mm]</td>
</tr>
<tr>
<td>Number of flutes</td>
<td>z</td>
<td>-</td>
</tr>
</tbody>
</table>

1.10.8 Conclusions

This work describes EDM and micro-EDM comprehensively and compares the types of pulse generators, electrodes and methods for calculating MRR, EWR, overcut, and surface roughness for these methods. Various fabrication and measurement processes of microelectrode are explained as well. Moreover, this research work was carried out to characterize the effects of micro-EDM drilling of WC–16%Co with a CuW microelectrode by using EDM machine. The results show that:

- Various machining conditions produced different amounts of overcut.
- ANOVA analysis illustrated that MRR increased with amplifying current, rotating speed and capacitor, and decreasing voltage and pulse-ON time. The current and capacitor were the most significant factors, but the effect of the capacitor was greater than current. It can be concluded that the capacitor had the greatest impact on improving MRR. Moreover, EWR increased by increasing current and pulse-ON time and decreasing pulse-OFF time. The effect of pulse-ON time on EWR was more prominent than other parameters.
- It was found there were direct relationships between the surface finish of micro-holes, burr-like recast layer at the top surfaces and MRR. It can be concluded that surface roughness enhanced and the amount of burr-like recast layer at the top surfaces decreased with decreasing current, rotating speed and capacitor, and increasing voltage and pulse-ON time. The current and capacitor were the most significant factors; however, the effect of the capacitor was greater than current.
- Pulse-OFF time and rotating speed had no effect on the amount of micro-cracks due to the insignificant effect on electrical discharge energy. On the other hand, the electrical discharge energy depends on the voltage, current, pulse-ON time, and capacitor. It can be concluded that amount of the micro-cracks decrease with increasing voltage and decreasing current, pulse-ON time and capacitor. The voltage, current, pulse-ON time, and capacitor were significant factors contributing to the amount of micro-cracks. However, the effects of voltage, current, and capacitor were stronger than pulse-ON time.
- Al was added to the recast layer at the wall of the micro-holes, and because aluminum powder was used in the dielectric, aluminum migrated to the machined surface and recast layer. The amount of C and O in the recast layer increased because oil-based dielectric was used. As a result, it is suggested to use powder that is more similar in terms of elemental composition to the workpiece in dielectric. Finally, various machining conditions produced different amounts of overcut.
- In conclusion, EDM can be used confidently for producing micro-holes.

Acknowledgment

The authors would like to acknowledge the University of Malaya for providing the necessary facilities and resources for this research. This research was funded by the University of Malaya Research Grant (UMRG) Program No. RP039B-15AET and Postgraduate Research Grant (PPP) Program No. PG027-2015A.

See also: 1.7 Techniques to Improve EDM Capabilities: A Review

References

Index

Note
This index is in letter-by-letter order, whereby hyphens and spaces within index headings are ignored in the alphabetization, and it is arranged in set-out style, with a maximum of three levels of heading.

Cross-reference terms in italics are general cross-references, or refer to subentry terms within the main entry (the main entry is not repeated to save space).

Location references refer to the volume number, in bold, followed by the page number.

Major discussion of a subject is indicated by bold page numbers; page numbers suffixed by ‘F’ and ‘T’ refer to figures and tables, respectively.

A
AA see Aluminum Association (AA)
AA sample see artificially aged (AA) sample
AA6061 alloy 2:357
ab initio methods 3:86
Abbe Criterion 3:244–245
abrasion 1:77
resistance 3:156
abrasion resistant high-alloy white irons 2:276–279
heat treatment of high-chromium white irons 2:280–281
of nickel–chromium white irons 2:277–279
abrasive belt grinding 3:194
abrasive flow machining (AFM) 1:98, 1:116F
advantages 1:115–116
applications 1:116–117
gear finishing by 1:115
limitations 1:116
machines 1:113
components of 1:113–115
parameters of 1:115
types 1:112
one-way AFM 1:112, 1:114F
orbital AFM process 1:113, 1:115F
two-way AFM 1:112–113, 1:114F
working principle of 1:112
abrasive fluidized bed (AFB) 3:216
abrasive jet machine (AIM) 1:178–180
abrasive material 1:98–99
abrasive waterjet machining system 1:157–158
abrasive-assisted wire 1:249, 1:249F
ABS 1:443–444
AC see alternating current (AC)
acceptance test on fasteners 2:307
AC-HVAF see assisted combustion high velocity air fuel (AC-HVAF)
aoustic emission (AE) 1:6
acrylate photopolymers 3:118, 3:118–119
active compliance toolhead 1:134, 1:139, 1:140F, 1:144
ANFIS-based model 1:233
development 1:253–258
results and discussion 1:258–259
electrical parameters effect on WLT 1:259
wire electrode parameters effect on WLT 1:260–262
workpiece parameters effect on WLT 1:262
verification 1:258
adding and altering methods 3:256–257F
adding agents 3:376
additive manufacturing (AM) 3:111
stereolithography (SLA) 3:111–112
selective laser sintering (SLS) 3:112
additive process for miniature gear manufacturing 1:511–513
die casting 1:514
injection compression molding (ICM) 1:518–519
lithography, electroforming and molding 1:521–522
metal injection molding (MIM) 1:516–518
micro-powder injection molding (μ-PIM) 1:519–521
powder metallurgy (P/M) process 1:511–513
disruption 3:306–307
physical and chemical reasons 3:307F
resistance 3:306–307
adhesion strength of coating 3:31–52
adhesion testing for coatings 3:31–52
ADI see austempered ductile iron (ADI)
AE see acoustic emission (AE); algorithm effect (AE); assisting electrode (AE)
aerated liquid atomization 3:152
aerospace materials 2:424
AF1410 steel heat treatment 2:185–186, 2:185F
high-temperature of AerMet 100 steel 2:187F
microstructures of AerMet 100 steel 2:186F
AFB see abrasive fluidized bed (AFB)
AFM see abrasive flow machining (AFM)
atomic force microscope (AFM)
atomic force microscopy (AFM)
Ag electrosless process 3:7
AG40L Sodick electrical discharge machine 1:302F
aging 2:9, 2:353–354
age-hardening treatment 2:32–34
artificial 2:356–357, 2:357F
determination 2:388–389
factors affecting 2:390
composition of alloy 2:390
plastic deformation 2:390
solutionizing treatment system 2:390
ultrasonic 2:390
operation 2:390
parameters 2:389, 2:389F
pre-conditions and property requirements 2:388
quality control 2:389–390
key points of operation 2:390
properties of aluminum alloys 2:390
stress aging 2:389
temperature 2:389, 2:390
time 2:389
treatment effect 2:328–333
processes 2:387–388
AGMA standard see American Gear Manufacturers Association (AGMA) standard
AHSS see advanced high-strength steels (AHSS)
air assist atomizer 3:132, 3:152F
air blast atomizer 3:132
air cylinder pressure control modeling 1:137
air patenting 2:22
air plasma spray (APS) 3:214
YSZ coatings 3:198
air spindle speed control modeling
1:137–138
aircraft coatings 3:150
air-hardening, medium-alloy cold-work tool
steels 2:217–218T, 2:219–221T
AISI see American Iron and Steel Institute
(AISI)
AISI 304 steel 1:352
AISI 1050 carbon steel 1:233–234, 1:251T,
1:252, 1:261F
AISI 4140 steel 2:188, 2:189F
AISI D2 tool steel 2:427
AISI H13 tool steel 3:159–160, 3:164,
3:166–167, 3:170–171, 3:175–176,
3:176
AISI tool steels, chemical composition of
2:217–218F
AIRM see abrasive jet machine (AIM)
Al–4Cu alloy 2:378–380, 2:379F
algorithm effort (AE) 1:87
alkali niobates 3:353, 3:354–355
alkaline soap cleaning 3:222
Al–Li alloy system 3:358
alloy carbides 2:228
alloy steels 2:11
carburization of see carburization of alloy
steels
for gear manufacturing 1:97
alloy(s) 2:357, 3:368, 3:369F
4546–H39 2:338–339
composition 2:266, 2:306, 2:390,
3:86–87, 3:86
layers 3:25–26
alloying
effects on annealing soaking time 2:251–252, 2:252F
elements effect on hardenability 2:65–66,
2:65F, 2:66F, 2:67T
system of Ti alloys 2:290
z stabilizers 2:290
β stabilizers 2:290
neutral elements 2:290
alloying elements 2:11, 2:11–12
classification 2:11–12
effect of 2:12–15
individual alloying elements in
summarized form 2:14–15
on TTT and CCT curves 2:15–20
on eutectoid temperature of steel 2:13F
on hardness of steel 2:12F
all-purpose aluminum alloys 2:374, 2:374F
z alloys see z-Ti alloys
alpha brass, stress corrosion cracking in
2:408F
z phase 2:290
formation of equilibrium 2:306
wires 1:243, 1:243F
z stabilizers 2:290
alpha-beta aluminum bronzes 2:409–410
z/β alloys see z/β Ti alloys
z/β-Ti alloys 1:243–244, 2:291–292
heat treatment 2:301–305
annealing 2:305
change of microstructures during
thermochemical process 2:305F
decomposition of metastable β 2:306
normalizing 2:305
quenching 2:305–306
tempering 2:306
thermal treatment effect 2:306
z-Case 2:125–126
z-Ti alloys 2:290–291
see also β-Ti alloys
fully z-Ti alloys 2:290–291
maximum stress and steady-state stress
2:297F
near z-Ti alloys 2:291
alternating current (AC) 3:361–362
alternative rate cooling 2:387
alumina 1:4, 1:12–13, 3:72, 3:74,
3:307–308, 3:371
tiles 3:72–73, 3:78–81
cross-section laser-treated workpiece
3:80F
laser-treated surfaces 3:79F
microhardness at work piece 3:81T
optical photograph 3:78F
x-ray diffractogram 3:80F
aluminum 1:281, 2:14–15, 2:337
for gear manufacturing 1:97
heat treatment techniques
digital modeling 2:391
new short T6 heat treatment 2:390–391
novel multi-stage solutionizing
2:392–393
thermo-mechanical treatment
2:391–392
thermo-mechanical treatment for
non-ferrous alloy 2:392, 2:392F
water–air spray cooling 2:391, 2:391F
aluminum alloys 2:337, 2:340–341, 2:373,
2:390
see also Co–Ni alloys
7050–T7451 aluminum alloy 2:173
designation system 2:337–338, 2:338T
heat treatment 2:341–347, 2:373
aluminum matrix composites
2:395–396, 2:396F
multi-heat treatment on aluminum
2:393–395
novel techniques 2:390–391
purpose and principles 2:374
temper nomenclature 2:382
inspection and quality assurance
2:368–369
processes of aging treatment 2:387–388
progress in heat treatment 2:390–391
properties
composition of alloy 2:390
plastic deformation 2:390
solutionizing treatment system 2:390
temperature of aging 2:390
ultrasonic 2:390
technological characteristics of solution
treatment 2:383–384
temper designations 2:338–340
Aluminum Association (AA) 2:337–338
aluminum bronzes, heat treatment of
2:409–410
aluminum casting die 2:244
aluminum castings 3:42
aluminum extrusion die 3:158
aluminum nitride 2:93, 2:108–109, 2:113
aluminum oxide see alumina
aluminum/PMMa mold 1:448F
aluminum–brass wire 1:240, 1:240F
aluminum–phosphate 3:199–200
AM see additive manufacturing (AM)
American Gear Manufacturers Association
(AGMA) standard 1:507
American Iron and Steel Institute (AISI)
2:61–62, 2:215
American National Standards Institute
(ANSI) 2:337–338
ANSI 35.1 standard 2:338
ammonia dissociation 2:114
amorphous polysaccharide 1:205
analysis of variance (ANOVA) 1:13–14,
1:29, 1:182–183, 1:306–308
analysis 1:19, 1:21, 1:22
for EWR 1:308T
for MRR 1:307T
ANFIS models see adaptive neuro-fuzzy
inference system (ANFIS) models
animal fiber 1:208
ANN see artificial neural network (ANN)
annealing 2:2, 2:9, 2:20, 2:181, 2:188,
2:190, 2:281, 2:305, 2:368,
2:368F
annealing soaking time, alloying effects on
2:251–252, 2:252T
diffusion 2:24
ductile iron 2:262, 2:266F
full 2:20
gear alloys 2:251
effects of alloying on annealing soaking
time 2:251–252
types of annealing 2:251
homogenization 2:24
incomplete 2:22
intercritical 2:22–23, 2:23
isothermal 2:20–22
patenting 2:21–22
recrystallization 2:24–27
spheroidizing 2:23–24
subcritical 2:27
treatments 2:300–301
anode 3:361
anodic coatings 3:199
anodizing 3:42
anomalous behavior 3:86, 3:86–87, 3:88,
3:89
ANOVA see analysis of variance (ANOVA)
ANSI see American National Standards
Institute (ANSI)
ANSYS CFX flow model 1:450–451, 1:452,
1:457, 1:457–458
Ansys package 2:167
anti-galling 3:323
antiphase boundary (APB) strengthening
2:418–419
APB strengthening see antiphase boundary
(APB) strengthening
applied Wilhelmy plate methodology
3:279F
APS see air plasma spray (APS)
aqueous solutions 2:54, 3:199–200
arc spray coatings 3:43
atomic force microscopy (AFM) 3:207
aromatics-based binder system 1:476
array micro-holes, continuous machining process of 1:296–298
Arruda–Boyce constitutive model 1:147–148, 1:148
ARs see aspect ratios (ARs)
artificial aging 2:356–357, 2:357f
artificial neural network (ANN) 1:20, 1:195, 1:484
artificially aged (AA) sample 2:356
AS see arc spraying (AS)
atomic hydrogen mechanism 3
assisting electrode (AE) 1
aspect ratios (ARs) 1:173
as-quenched castings 2:264
assisted combustion high velocity air fuel (AC-HVAF) 3:212–213
assisting electrode (AE) 1:334
as-sprayed coating 3:192
as-sprayed surface finish 3:213
automobile industry 3:213
power generation industry 3:213
surface roughness of bondcoats in TBCs 3:213–215
ASTM A681-94 Standard 2:215
ASTM C1327-99 standard 3:74
ASTM D3359-09e2 3:224–226
ASTM D7027-05 standard 3:75
atomic force microscope (AFM) 3:142, 3:144–145
micrographs 3:142–143
surface topography 3:142–143
texture profile micrographs 3:143–144
atomic force microscopy (AFM) 1:421, 3:87, 3:90–94, 3:91f
atomic hydrogen mechanism 3:223
atomization 3:150–151
aerated liquid 3:152
centrifugal 3:152
ultrasonic 3:153
atomizers
droplet formation and fate 3:150
basic mechanism 3:150
coating formation on the surface 3:151
formation of droplets 3:150–151
spray air contact 3:151
and finishing properties 3:153–156
types and requirements of 3:151–153
atoms, diffusion of 2:400
austenpered ductile iron (ADI) 2:264
doctoring 3:266–267
of ductile iron 2:264–266
metalurgical variables on properties of ADI 2:264–266
two-step austempering heat treatment 2:268–269
doctoring 3:266–267
doctoring 4:253–255, 2:254f, 2:255f
case studies 2:255, 2:255f
heat treatment 3:198
austenite 2:4–5, 2:92–93, 3:336
caracteristic features of 2:92–93
effect of austenite composition 2:93
excessive retained 2:93
effect on properties 2:93
major cause 2:93–94
reducing retained 2:94
austenite grain size 2:93, 2:94, 2:95f, 2:96f, 2:97, 2:97f, 2:234f
austenite stabilizer 2:5
austenite grain growth 2:9f
austenitic graphite irons 2:269–271
case studies on 2:272–273
effects of composition 2:270–271
heat treatment 2:271
austenitic stainless steel 2:200–204
austenitizing temperature 2:10, 2:63–64
austenitizing time 2:50, 2:63–64, 2:252
Australian Gear standard 1:507
auto clave moulding 1:220
automobile industry 3:213
auxiliary equipment and application 1:474f
auxiliary mode 1:41
average method 1:132, 1:132f, 1:133
average roughness 1:15
avian fiber 1:208
axial stiffness 1:147
axial/conventional rotary gear shaying 1:107, 1:107f
Axioplan 2 imaging optical microscope 3:160
axi-symmetric 2D model 1:195
axi-symmetric 3D thermo-physical model 1:195–196
AZ91 alloy 3:311–312, 3:313f
AZ91D magnesium 3:320
B
bainite, formation in steels 2:42–43
mechanism of 2:42–43
bainite reaction curve 2:15
bainitic heat treatment of malleable irons 2:258
bainitic transformation 2:7–8
bake hardening 2:209, 2:210–211
ball burnish machining (BEDM) 1:398, 1:399f
barium strontium titanate (BST) 3:354
barreling 3:355
barrier coating 3:27
batch hot-dip galvanizing processes 3:181–183, 3:182f
batch production mode of mass micro-holes 1:286f
Battenfeld Microsystem 50 1:443
BCC see body centered cubic (BCC)
BCC crystal structure see body-centered cubic (bcc) crystal structure
BD see bore deviation (BD)
BE/PM see blended elemental powder metallurgy (BE/PM)
bearing steel 2:196–197, 2:197f, 2:197t
comparison of ELID performance with finishing processes for 1:379f
cylindrical ELID 1 grinding, for 1:378f
effect of finishing operation on 1:378f
BEDG see block electrical discharge grinding (BEDG)
BEDM see ball burnish machining (BEDM)
benozoic acid 3:286
Bertsch system 3:113–114, 3:114
beryllium bronzes, heat treatment of 2:410–413
beryllium–copper alloys 2:415
β alloys see β-Ti alloys
β phase 2:290
separation 2:306
beta phase wires 1:243–244
cross-section of wire 1:244f
different processing steps 1:245f
wires with different coating thickness 1:245f
X and D types of wire electrodes 1:244f
β stabilizers 2:290
β phase 2:290
beta–gamma phases 2:143–244
β-quenching 2:35
β-Ti alloys 2:292
see also γ-Ti alloys
composition, category, transus
temperature, source, and year of introduction 2:314f
heat treatment 2:311–317
deformation in α + β-phase field 2:317–321
deformation in β-phase field 2:313–317
deformation parameters 2:316f
grain coarsening in β-phase field 2:321f
sequence of events during restoration process 2:320f
SMAs 2:321–322
variation in β-transus temperature 2:313f
pseudo-binary β-isomorphous phase diagram 2:292f
stabilizers 2:293f
steady-state stress 2:296f
β-transus temperature 2:312
(Ba0.6Na0.4)2TiO2, 3:355–356
(Ba0.6Na0.4)2TiO2-BaTiO3 (BNT-BT) 3:355
bicrystal finctional inclusion 1:467
‘billet’ 1:524
binary NdTi
fabrication of 3:340–342
spark plasma sintering of 3:340–342
biodegradability 1:204
biomedical microdevices 3:121
biomimetics 3:294
bipolar pulse 3:361–362
blackheart malleable iron 2:257
blended elemental powder metallurgy (BE/PM) 2:304
blistering, in surface coatings 3:154
blob analyses 3:273f, 3:274
block electrical discharge grinding (BEDG) 1:282
BMC see bulk moulding compound (BMC)
BNT-BT see (Bi$_2$O$_3$Na$_3$)$_2$TiO$_3$-BaTiO$_3$
(BNT-BT)
body centered cubic (BCC) 2:5
body-centered cubic (bcc) crystal structure 2:112, 2:290
Boltzmann constant 1:147–148
bonnet polishing 1:160
bore 1:26
bore deviation (BD) 1:39
boring process 1:26, 1:41–42
application in building of tunnel 1:39–41
boring bar 1:26–27, 1:27
dynamic properties 1:34T
with passive damper and accelerometer 1:30F
cast iron boring machining operation 1:32T
cutting force measured at Smart Tool 1:38F
disk cutters 1:43F
dynamic simulation 1:34F
experimental and simulated cutting force values 1:36F
experimental conditions 1:30T, 1:31T
experimental results 1:30T, 1:31T
internal turning operation 1:27
model parameters 1:37T
monitoring variables 1:37T
operations 1:26, 1:27–39, 1:27F, 1:43–44
surface roughness with passive damper 1:40F
test trials 1:29T
boron hardenability effect 2:67–69, 2:68F
bound-abrasive CMP 1:162
bound-abrasive polishing 1:162
Bragg’s law 1:415
braiding 1:218
brass 1:277
heat treatment of 2:406–408
wire 1:239–240, 1:240F
electrode 1:257T, 1:259, 1:260F, 1:261F
Brinell hardness number (HB) 1:131–132
Brinell test model 1:131–132
brines 2:54
British Standards Institute (BSI) standard 1:507
bronzes, heat treatment of 2:408–409
aluminum bronzes 2:409–410
beryllium bronzes 2:410–413
silicon bronze 2:413–414
tin bronzes 2:409
BSI standard see British Standards Institute (BSI) standard
BST see barium strontium titanate (BST)
BT see barium titanate (BT)
BUE see builtup formation (BUE)
BUEHLER Wirtz Vickers test apparatus 3:160
buffing process 3:194
builtup formation (BUE) 1:1, 1:11–12, 3:230, 3:237
bulk micromachining 1:329–330
bulk moulding compound (BMC) 1:219
burnishing 3:194, 3:308
burr 1:139–140
gometry 1:141T
reduction 1:144F
C
CA see contact angle (CA)
Ca$_{10}$ (PO$_4$)$_3$ (OH)$_2$ see hydroxyapatite (HAP)
CACO technique see continuous ant colony optimization (CA CO) technique
CAD see computer aided design (CAD)
cadmium coatings 3:39
CAE applications see computer aided engineering (CAE) applications
CAH see contact angle hysteresis (CAH)
Cahn see coefficient of thermal expansion (Cahn)
calcium stearate 3:24
calcium titanate 3:28
carbon 2:73–74
gas carburization 2:78
advantages 2:79
atmospheric conditions for 2:78–79
carbon potential 2:79
carburizing process 2:78
carburizing reactions 2:78
carrier gases 2:79
disadvantages 2:79
safety measures for 2:79–80
liquid carburization 2:76–77
advantages 2:77
carburizing process, high temperature baths 2:77
carburizing process, low temperature baths 2:76–77
disadvantages 2:77
safety precautions 2:77–78
plasma carburizing 2:80–81
advantages 2:81
carburizing process 2:80–81
control of carbon supply and case depth 2:81
solid/pack carburization 2:73–74
advantages 2:75–76
carburizing process 2:73–74
carburizing process 2:74
chemical reactions 2:74
decarburization 2:74–75
disadvantages 2:76
vacuum carburizing 2:80
advantages 2:80
carburizing process 2:80
control of carbon supply and case depth 2:80
disadvantages 2:80
carburization, problems during 2:102–103
cladding and exfoliation 2:104
prevention 2:104
distortion 2:103–104
drastic quenching 2:104
high temperature hardening 2:104
rehardening 2:104
release of internal stresses 2:104
uneven heating 2:104
grinding cracks 2:105
prevention 2:105
insufficient case depth 2:103
prevention 2:103
low hardness 2:103
decarburization 2:103
higher case depth 2:103
retained austenite 2:103
nonuniform carburizing 2:103
prevention 2:103
soft spots 2:104
prevention 2:104
sooting 2:103
prevention 2:103
uneven case depth 2:103
prevention 2:103
carburization, theory of 2:81–82
controlling factors of carburization 2:82–85
flow of carbon from the supply source 2:85–86
flow of carbon in iron 2:82–85
equilibrium state for chemical reaction 2:82
Fick’s laws of diffusion 2:81–82
carburization of alloy steels 2:94
austenitic stainless steel, low temperature carburization of 2:98–99
activation 2:99–100
carburizing atmosphere 2:101
microstructure of low temperature carburized layer 2:101
processing temperature ranges 2:100–101
low alloy steels 2:94
chromium–nickel steel 2:94
molybdenum–nickel steel 2:94–96
microalloyed steels 2:96–98
niobium-microalloyed steel 2:98
vanadium-microalloyed steel 2:97–98
tool steels, carburization of 2:101–102
cold working tool steel 2:102
hot working tool steel 2:101–102
mold steel 2:102
shock resisting tool steel 2:102
carburized components, processing sequence for 2:105
carburized steels, microstructures of 2:90–91
austenite 2:92–93
characteristic features of 2:92–93
effect of austenite composition 2:93
excessive retained 2:93
reducing retained austenite 2:94
martensite 2:90–91
formation 2:90–91
morphologies 2:91–92
tempering, effect of 2:92
transition carbides, role of 2:92

carburizing 2:73, 2:73F, 2:204

diffusion of carbon in iron during 2:84F
heat treatment after carburizing and properties of carburized parts 2:86–87
direct quench technique 2:89
double hardening 2:87–89
heat treatment of gas-carburized steels 2:90
quenchants for carburized steels 2:89–90
single hardening with core refinement 2:87, 2:87F
single hardening without core refinement 2:87, 2:87F
subzero treatment 2:90
packing of workpieces in a box for 2:73F

Carburizing agent 2:79
Carreau model 1:492
Carreau viscosity model 1:445
Carreau–Yasuda viscosity model 1:445–446
Case see diffusion zone
case depth insufficient 2:103
prevention 2:103
uneven 2:103

prevention 2:103

Cassie state 3:278
Cassie–Baxter states 3:139–140, 3:146–147
Cassie-impregnated state 3:141
cast and forged aluminum alloy parts, tempers for 2:383, 2:385T
cast irons 2:436–437, 2:247
see also gray irons; malleable irons for gear manufacturing 1:97
heat treatment 2:248
matrix structures 2:248F
types 2:247–248

cast magnesium alloys 2:36
cast steel, for gear manufacturing 1:97

castability 2:270
casting methods 3:337

casting route 2:289

Castro-Macosko viscosity function 1:445
cathode
gear 3:373–374, 3:373F, 3:374F
spatter 2:114
cathodic coatings 3:199

Cauchy–Green deformation tensor 1:147–148
caul plate 1:219

CBN see cubic boron nitride (CBN)
cBN-TiN-coated carbide tools 1:63

CCD array see Charge–Coupled Device (CCD) array

CCD method see central composite design (CCD) method

CCGA see cooperative coevolutionary genetic algorithm (CCGA)

CCR see critical cooling rate (CCR)

CCT see continuous cooling transformation (CCT)

CCT diagram see classical time temperature cooling (CCT) diagram

CD’s injection mold 2:223F

CD see carburizing

cemented carbides 1:55
centering collar 1:150F
central composite design (CCD) method 1:225
centrifugal atomization 2:378

ceramic carbides 3:43, 4:39

ceramic injection molding (CIM) 1:467
ceramic matrix composites (CMC) 1:173, 1:212
ceramic(s) 2:442, 3:14
coatings 3:196
composite tools 1:8
ELID grinding for 1:370–373
fibers 1:209
tool materials 1:55–56
cermet 1:55, 2:449, 3:347

CFD see computational fluid dynamics (CFD)

CF-HIP see capsule free-HIP (CF-HIP)

CF-PEEK see carbon fiber-reinforced PEEK (CF-PEEK)

Charge–Coupled Device (CCD) array 1:296, 3:245–246

chatter vibration 1:5

chemical and textual analyses 3:87–88

chemical bed deposition 3:294F

chemical etching 3:308

material removal by 3:59

chemical mechanical polishing (CMP) 1:159–160, 1:365

CVD-SiC film 1:378F

nitride coatings 2:132

process 2:323

chip formation 1:60–61

chip load 1:323

chipping, in surface coatings 3:154

chopped fibers 1:213

chopper gun 1:220

cromat 3:313–320

conversion coating, substrate, coating contents 3:321–322T

non-chromic coatings, substrate, coating contents 3:324T

chromate coatings 3:42

cromated zinc 3:313–320

chromium 2:13–14, 2:13F, 2:14,

carbid 1:65

chromium-molybdenum steel 2:192

chromium copper 2:414

chromium hot work tool steels 2:217–218F

chromium nitride 2:116

chromium plating electrolytes 3:48

chromium–nickel steel, carburization of 2:94

CIM see ceramic injection molding (CIM)

CIP process see cold isostatic pressing (CIP) process
classical time temperature cooling (CCT) diagram 2:155

c-LBM see cover plate laser beam machining (c-LBM)
cleaning system 3:372
closed die forging 1:525

CLSM see confocal laser scanning microscopy (CLSM)

CM see ceramic matrix composites (CMC)

CMM see computational micro-mechanics (CMM)

C-Mold software 1:472–473

CMP see chemical mechanical polishing (CMP)

CNC see computer numerical control (CNC)

CNTs see carbon nano tubes (CNTs)

CO2 laser 2:138, 3:74

Co-alloys 3:195

coarse powder (INV1) feedstock 1:476, 1:476F

coated carbide inserts 1:10
tools 1:48, 1:50, 1:56, 1:59

coated EDM wires 1:240–241
double-layer-coated wires 1:241, 1:242F

single-layer-coated wires 1:240–241, 1:241F

coated wire electrode 1:259–260, 1:260F, 1:261F

coating as a method of surface finishing 3:45–46

miscellaneous surface finish applications 3:49

biomedical applications 3:50

conformal coatings 3:49–50
electrical and magnetic properties 3:50

hydrophobic coatings 3:49

optical coatings 3:50

rough coatings 3:50

thermal coatings 3:50

surface finishing facets of coating 3:46

barrier protection 3:47

cathodic protection 3:47–48

generating smooth and lubricious surface 3:49

improving esthetic appeal 3:46

protection against corrosion 3:46–47

resistance to wear 3:48–49

coating for surface finish applications, selection of 3:54

coating methods advantages and limitations for 3:44T

coating morphology and metallurgical changes 3:101–102

single layer coating 3:101–102

two layer coatings 3:102–103

coating parameters and process optimization, influence of 3:50–51

coating processes, types of 3:39–40

conversion coatings 3:42
atomic force microscopy 3:244, 3:247F
portable handheld surface finish instrument 3:243, 3:244F
stylus profilometer (SP) 3:243–244, 3:244F
continual induction hardening computation of 2:164F
numerical model for analysis of 2:165, 2:166F
software 2:166F
continuous ant colony optimization (CACO) technique 1:198
continuous cooling transformation (CCT) 2:255, 3:304, 2:304F
curve 2:224
of steels 2:227F
diagram 2:11
continuous hot-dip galvanizing processes 3:181–183, 3:182F
continuous phase plate (CPP) 1:164
continuous polishing path 1:124–126
continuous surfaces 1:71
control block diagram 1:134F
closed-loop tool length 1:142F
close loop pressure tracking 1:140F
controlled thermal expansion 2:270
convective stage see liquid cooling stage conventional grinding 3:193–194
conventional lap grinding 3:385F
conventional loose-abrasive grinding 1:154–157
conventional machining processes 3:365–366
conventional material removal process 1:268
conventional metallurgy process 2:216–218
conventional processes 3:359
conventional sintering (CS) 3:338–339, 3:347, 3:348F
SPS advantages 3:349
corrosion coatings 3:42, 3:311–320
see also polyurethane (PU) coating anodizing 3:313–320
chromate 3:313–320
chromate coatings 3:42
hexavalent and trivalent chrome comparison 3:322–323
hexavalent non-chromic coatings 3:320
phosphating 3:323–325
replacement schedule 3:320
type, substrate, coating contents 3:314–319F
weight reduction curve 3:323F
cooling
quenching medium 2:386
rate 2:386–387, 2:387F
techniques 1:80–83, 2:387, 2:387F
temperature range 2:387
cooling transformation (CCT) 2:195
cooperative coevolutionary genetic algorithm (CCGA) 1:43
copolycondensation 1:217
co-powder injection molding (2C-PM) 1:467
graphite 1:277
wire 1:238–239, 1:240F
copper, heat treatment of 2:405–408
brasses, heat treatment of 2:406–408
bronzes, heat treatment of 2:408–409
aluminum bronzes 2:409–410
beryllium bronzes 2:410–413
silicon bronze 2:413–414
tin bronzes 2:409
chromium coppers 2:414
- copper–chromium–zirconium alloys 2:415
copper–nickel–silicon–chromium alloy 2:415
cupronickels 2:414
zirconium–copper alloys 2:414–415
copper and copper alloys 2:398–400, 2:399–400
annealing 2:401–405
homogenization 2:400–401
stress relieving treatment 2:405
copper oxide 1:4
copper tungsten 1:392–393, 1:393
- copper–beryllium bronzes 2:410–411, 2:412
- copper–tungsten 1:276
- copper–zinc alloy wire electrodes 1:232
copper–zinc phase diagram 2:405F
- core refinement
single hardening with 2:87, 2:88F
single hardening without 2:87, 2:87F
corrosion 3:25, 3:32
corrosion properties, laser peening 1:427–429
- like electrochemical techniques 3:53
measurements of 3:52–54
- protection against 3:46–47
- barrier protection 3:47
- cathodic protection 3:47–48
casting 3:194
- effect of gas nitriding on wear and 2:131
- high silicon irons heat treatment 2:273–276
testing of coating 3:109
tests 3:99
- of zinc 3:48F
- counter measures 1:42–43
coupling 1:209
cover die 1:514
cover plate laser beam machining (c-LBM) 1:268–270
coverage area map (CAM) 1:124, 1:125F, 1:126F
CP Ti see commercial purity titanium (CP Ti)
CPH see cocoa pod husk (CPH)
CPP see continuous phase plate (CPP)
CQ see cryo-quenching (CQ)
CR see compression ratio (CR)
cracked die, microstructure in 2:240F
cracking, in surface coatings 3:154
cracking and exfoliation 2:104
prevention 2:104
cracking in laser polishing 1:166
- cratering, in surface coatings 3:154
crawling, in surface coatings 3:154
critical cooling rate (CCR) 2:3–4
critical diameter 2:56–57, 2:57F
evaluation 2:59, 2:59F
- critical resolved shear stress (CRSS) 2:328
cross ‘+’ micro channel, experiments and simulation for 1:455–456
cross viscosity model 1:445, 1:492
cross-exponential Marcus viscosity model 1:445–446
cross-linked polymers 1:217
crowding 1:126
CRSS see critical resolved shear stress (CRSS)
cryogenic machining 1:80–83
cryogenic processing of ferrous alloys 2:426–427
do of nonferrous alloys 2:445–447
- industrial context 2:423–424
cryogenic processing industry 2:423–424
current uses of CT process 2:424
future of CT and applications 2:424
- optimizing CT process 2:426
technology 2:425
traditional heat treatment 2:422
cryonics 2:422
cryo-quenching (CQ) 2:425
CryoTech 2:423
cryotreatments see cryogenic treatment (CITs)
crystalline
refinement 1:429
size 1:417–418
crystallization 1:217
crystallization process of polycarbonates 3:138
CS see cold spraying (CS); conventional sintering (CS)
CSI see coherence scanning interferometry (CSI)
CT see computed tomography (CT)
CIE see coefficient of thermal expansion (CIE)
CITs see cryogenic treatment (CITs)
cupronickels 2:414
Curie temperature 3:353
- curing process 1:220
current density 3:367, 3:369
residual stress measurements by 3:98–99
- custom-made vertical injection molding machine 1:447–448
injection mechanism 1:448
mold design 1:448
plasticizing unit and injection mechanism 1:447–448
cut quality assessment 1:351

cutting
 edge geometry 1:56–58
 preparation 1:57F
 errors 1:74–75
 forces 1:35–36, 1:58–60, 1:59f, 1:230, 1:323, 1:238F
 modeling 1:75–76
 machine specification 1:225, 1:225F
 process monitoring method 1:37
 speed 1:81

cutting fluids 1:1–4
 boric acid 1:4
 coconut oil 1:2
 extensive research 1:1–2
 NDM 1:3
 in turning 1:4
 twisted nematic liquid crystals 1:3–4

cutting tool(s) 1:27, 2:225F, 3:230, 3:232
 dimensions 2:235
 factors due to 1:6–9
 BUE formation 1:11–12, 1:12F
 tool coating 1:12–13
 tool geometry 1:6–9
 tool wear 1:9–11
 type of tool edge preparation 1:7F
 materials 1:55–56
 Cu–Zn–Al alloys 2:415–416
 CV see computer vision (CV)
 CVD see chemical vapor deposition (CVD)
 CW samples see cold-worked (CW) samples
 cyanide bath, liquid carburization in 2:76F
 cyanide-free plating bath 3:11
 cyclic process 2:388
 cyclic yield strength 1:431

dense dislocation walls (DDWs) 1:425–426, 1:427, 2:176
 dense metallic membranes 3:14
 Density Functional Theory (DFT) 3:16
 dental implant 3:113F
 deposition 3:306–307
 of hard coatings 3:232–233
 stresses 3:57
 depth of cut (DOC) 1:27, 1:33
 design of experiment (DOE) 1:251, 1:483, 1:484, 1:486, 1:487
 for investigation of molded part quality 1:488T
 designation system of aluminum alloys 2:337–338, 2:338T
 design-to-manufacturing cycle 1:75
 desulfurization treatment 2:279, 2:281–282
 destructive method
 see also nondestructive methods
 hole-drilling method (HDM) 3:58–59, 3:58F
 layer removal (LR) 3:58–59
 material removal by chemical etching 3:59
 deterministic microgrinding (DMG)
 1:158–159
 detonation-gunn (D-gun) 3:207
 Deutsches Instut fur Normung (DIN)
 standard 1:507
 dezincification process 3:28
 DF see duty factor (DF)
 DFT see Density Functional Theory (DFT)
 D-gun see detonation-gunn (D-gun)
 diamond grinding 1:366
 Diamond Jet Hybrid (DJ Hybrid)
 3:207–208
 coatings 3:239
 DIC see digital image correlation (DIC)
 die casting process 1:514
 advantages 1:514–516
 applications 1:516
 limitations 1:516
 types 1:514
 die sink (DS) EDM 1:384–385
 dielectric liquid 1:175, 1:271
 dielectric medium 1:77, 1:177
 gas 1:177–180
 group in EDM 1:277–278
 dielectric vibration 1:174
 differential dilatomeric technique 2:18, 2:19F
 differential scanning calorimetry (DSC)
 diffraction method 3:60
 neutron diffraction 3:60
 synchrotron XRD 3:60
 XRD 3:60
 diffusion
 annealing 2:24, 3:198–199, 3:199
 of atoms 2:400
 inward diffusion 2:122–123
 diffusion coatings 3:42
 chemical gas diffusion 3:42
 liquid diffusion 3:42
 solid-state diffusion 3:42
 diffusion processes 3:447
 diffusion zone 2:122–123
 diffusion transformation 2:3–4, 2:6–7
 diffusion-annealed coated wires 1:243
 alpha phase wires 1:243
 beta phase wires 1:243–244
 epsilon phase wires 1:247, 1:248
 gamma phase wires 1:244–247, 1:245F
 diffusion-controlled process 2:117
 digital image correlation (DIC) 3:59
 digital micromirror devices (DMDs) 3:114, 3:115F
 digital modeling 2:391
 digital numbers (DNs) 3:266
 digitizing 3:266
 dilute medium 2:124
 dimensional accuracy 1:74–75
 dimensional stabilization see dimensional stability
 dimethylamine borane (DMAB) 3:3
 DIN standard see Deutsches Instut fur Normung (DIN) standard
 direct ablation mode 1:409, 1:410F, 1:411–413
 direct blending of molten bath 3:29
 direct current (DC) 3:233
 supply 3:359–360, 3:360, 3:372
 direct laser interference patterning (DLIP) 3:125
 direct quench technique 2:89
 discharge current 1:235–236
 discharge voltage 1:235–236, 1:279
 disk and ball specimens, wear rate of 1:377F
 disk scanning confocal microscopy (DSCM) 3:244–245, 3:245
 mechanisms 2:381–382, 2:382F
 theory 2:382
 dislocation cells (DCs) 2:176
 dislocation lines (DL) 1:422F, 1:425
 dislocation tangles (DTs) 1:419–420, 1:422F, 2:176
 dispersed metal oxide 3:25–26
 dispersion medium 2:381–382, 2:382F
 displacement deposition process 3:1
 dissolution, in surface coatings 3:154
 distortion 2:103–104
 DL see dislocation lines (DL)
 DLC see diamond-like carbon (DLC)
 DLIP see direct laser interference patterning (DLIP)
 DMAB see dimethylamine borane (DMAB)
 DMDs see digital micromirror devices (DMDs)
 DMG see deterministic microgrinding (DMG)
 DNs see digital numbers (DNs)
DOC see depth of cut (DOC)
DOE see design of experiment (DOE)
double dipping 3:181
double shielded TBM 1:42
double-ceramic-layer (DCL) 3:66
double-end dipping 3:181
double-layer-coated wires 1:241, 1:242F
double-stage process 2:109, 2:120–121
DP steels see dual phase (DP) steels
DR see deep rolling (DR)
drawdown phenomenon 1:522–523
droplet formation and fate 3:150
basic mechanism 3:150
coating formation on the surface 3:151
formation of droplets 3:150–151
spray air contact 3:151
DRX see dynamic recrystallization (DRX)
dry cutting 1:2–3, 1:80
dry EDM 1:177–180, 1:278–279
dry etching 1:330
dry machining 1:80–83
dry post-processing 1:167
DSC see differential scanning calorimetry (DSC)
DSCM see disk scanning confocal microscopy (DSCM)
DTs see dislocation tangles (DTs)
dual frequency induction surface hardening
2:169
dual phase (DP) steels 2:208–210, 2:209F, 3:185
bake hardened 2:210–211
dislocations around martensite particle 2:210F
ferrite–martensite structure 2:210F
rapid heating producing ultrafine grained 2:209–210
transmission electron micrograph 2:210F
dual-phase alpha-beta brasses 2:408
ductile irons 2:248, 2:260
see also high-alloy irons
heat treatment 2:260–262
annealing 2:262
austempering 2:264–266
considerations for 2:261–262
hardening and tempering 2:264
normalizing 2:262–264
stress relieving of ductile irons 2:269
surface hardening 2:269
microstructure 2:266F
ductile mode machining 1:372
ductile regime machining 1:325–326
duplex coatings 3:45
duplex stainless steel 2:204, 2:204F, 2:2047
duty factor (DF) 1:235, 1:236, 1:279
d-values 3:164
DXL see deep X-ray lithography (DXL)
dynamic recrystallization (DRX) 1:426, 1:432

E

EAs see effervescent atomizers (EAs);
evolutionary algorithms (EAs)
EBM see electron beam machining (EBM)
EBSD method see electron backscatter
diffraction (EBSD) method
EC see evolutionary computations (EC)
ECDe process see electrochemical deburring (ECDe) process
ECF process see electrochemical finishing (ECF) process
ECG process see electrochemical grinding (ECG) process
ECH process see electrochemical honing (ECH) process
ECM see electrochemical machining (ECM)
eco-friendly coatings 3:50
ECR process see electrochemical refining (ECR) process
ECW process see electrochemical winning (ECW) process
ED micromilling see electrical discharge (ED) micromilling
EDC see electrical discharge coating (EDC)
EDDSC process see electro-discharge diamond surface graining (EDDSC) process
EDG see electrical discharge grining (EDG) edge deburring 1:143F
EDM see electrical discharge machining (EDM);
electro-discharge machining (EDM)
EDMed SQ 1:404–405
EDMed surface 1:392, 1:396
EDS see energy dispersive spectroscopy (EDS)
EDT see electrical discharge texturing (EDT)
EDTA see ethylenediaminetetraacetic acid (EDTA)
EEM see elastic emission machining (EEM)
EES software see Engineering Equation Solver (EES) software
effervescent atomizers (EAs) 3:153F, 3:155
E-glass fiber 1:208
EIS see electrical impedance spectroscopy (EIS)
ejector die 1:514
elastic emission machining (EEM) 1:159–160
electric arc spray 3:43
electric wire arc thermal spraying 3:43
electrical and magnetic properties 3:50
electrical discharge (ED) micromilling 1:333
electrical discharge coating (EDC) 1:191, 1:395
electrical discharge grinding (EDG) 1:270
see also hard machining; electro-discharge machining (EDM)
advantages 1:529
applications 1:529–530
chip 1:271
dielectric medium 1:174–177, 1:277–278
electrical discharge (ED) micromilling 1:333
electrode material 1:276
electrode modification 1:191–193
experimental setup 1:303–304
hybrid machine for multi-processes of micromachining 1:271F
limitations 1:529
measuring frontal wear of microelectrode 1:303F
micro-EDM of nonconductive ceramics 1:333–334
assisting electrode 1:334
dielectric fluid 1:334–335
mechanism of material removal 1:335–337
recast layer 1:337–338
micro wire EDM 1:333
µ-EDM 1:529
online measurement 1:301F
PMEDM 1:180–186
powder addition 1:182–186
surface modification 1:186–188, 1:187F, 1:188F
process 1:172, 1:273F
process parameters 1:279–280
electrode wear 1:280F
fabrication processes of microelectrode 1:282–283
performance measure 1:280
prospective on process selection 1:300–303
pulse generators/power supply 1:274
simulation and modeling 1:193–195
sparking and gap phenomena 1:271–272
ultrasonic vibration assisted EDM 1:172–173
wire electrode 1:236–238, 1:239F, 1:253F
abrasive-assisted wire 1:249, 1:249F
coated EDM wires 1:240–241
customized wire shapes 1:238F
cutting rate improvement 1:238F
development of 1:238
diffusion-annealed coated wires 1:243
teniple strength wires 1:247–248
hot dip galvanized wire 1:249
plain wires 1:238–239
porous electrode wire 1:249–250, 1:250F
wires 1:237
electrical discharge texturing (EDT) 1:396
electrical impedance spectroscopy (EIS) 3:53, 3:53–54
electrical parameters 1:279
electro chemical testing 3:99, 3:105–107
electro deposition 3:330–332
electro etching 3:308
electro polishing 3:308
electro/chemical plating 3:44T
electrochemical deburring (ECDe) process 3:359, 3:375, 3:375F
advantages 3:375–376
applications 3:376
limitations 3:376
mechanism 3:375
electromagnetic and temperature calculations 2:160
electromagnetic field 2:159–160, 2:160, 2:163
electromagnetic methods 3:51
electromagnetic stir casting 1:15
electromotive force (emf) 1:61–62, 3:359–360
electron backscatter diffraction (EBSD) method 1:429
electron beam 3:196
remelting 3:196
electron beam machining (EBM) 1:332
electron donor parameters 2:138–139, 2:139T
electron microscopy 3:247–248
Scanning Electron Microscopy (SEM) 3:248, 3:248F
Transmission Electron Microscopy (TEM) 3:248, 3:248F
electron transfer 3:361
electronic packaging
electroless plating as surface finishing in 3:220–229
electronic speckle pattern interferometer (ESPI) 1:415
electrophoretic deposition (EPD) 1:163, 3:331
electrodeposition of metals 3:1
electroplating features 3:2
factors affecting quality of deposition 3:361–362
metals and applications 3:364T
overpotential 3:2
types of electrical waveforms 3:363F
electroplating zeolites 3:50
see also electroless plating (ELP)
principle of 3:360–361
surface finish in 3:376
electro-slag remelting (ESR) 2:241
electrospinning 3:294
electrostatic application 3:153
electro-thermal machining process 1:232
ELI see extra low interstitials (ELI)
ELID grinding see electrolytic in-process dressing (ELID) grinding
ellipsoid, crowding and unpolished areas for 1:128F
elliptical contact area 1:124F
Ellis model 1:492
elongation 1:237
ELP see electroless plating (ELP)
embrittlement in maraging steel 2:207–208
emf see electromotive force (emf)
EN coatings see electroless nickel (EN) coatings
enameling 3:200
energy beam micromachining 1:330–331
energy beam machining (EBM) 1:332
focused ion beam (FIB) 1:331
deposition 1:331
sputtering 1:331–332
laser micromachining 1:330–331
energy dispersive spectroscopy (EDS) 3:8, 3:74, 3:88, 3:94F
spectrum analysis 1:314–317
engineering applications
bearing steel 2:196–197, 2:197F; 2:197T
dual phase steels 2:208–210, 2:209T
hadfield steel 2:197–199, 2:198F; 2:198T
heat treatment
of steel casting 2:211–212, 2:211T
of TRIP 2:208
maraging steel 2:205–207, 2:206F; 2:206T
medium-carbon low-alloy steels 2:181, 2:188
silicon steel 2:195–196
spring steel 2:192–195, 2:192T
stainless steel 2:199–200
Engineering Equation Solver (EES) software 3:164
engineering surfaces 3:286–287
imperfections 3:287
lay 3:287
roughness 3:287
wavy conditions 3:287
environmental scanning electron microscopy (ESEM) 3:288–289
EP see electroplating (EP); epoxy resin (EP)
EP additive see extreme pressure (EP)
additive
EPD see electroplating deposition (EPD)
epoxy resin (EP) 1:215–216
carbide 2:40–41
epsilon phase wires 1:247, 1:248
equilibrium constant 2:82
equilibrium polycrystallization 1:217
equilibrium state for chemical reaction 2:82
Eringen–Okada equation 1:446
erosion resistance 2:270
ESEM see environmental scanning electron microscopy (ESEM)
ESPI see electronic speckle pattern interferometer (ESPI)
ESR see electro-slag remelting (ESR)
etal layer 3:180–181
and lithography 3:292
ethylenediaminetetraacetic acid (EDTA) 3:6, 3:7, 3:10, 3:224
EDTA-free bath 3:10
Eularian method 3:162
Euler–Bernoulli beam equation 1:33
eutectoid carbon content 2:5, 2:6F
eutectoid steel 2:7F
variation of nucleation and growth rate for 2:7F
evaporation 3:233
evolutionary algorithms (EAs) 1:87
evolutionary computations (EC) 1:87
EWR see electrode wear ratio (EWR)
excessive retained austenite 2:93
experimental measurement 3:58–59
destructive method 3:58–59
experimental methods and measurements 1:225
cocoa fiber composites 1:225
cutting machine specification 1:225
design of experiments 1:225, 1:226T
evaluation of cut quality characteristics 1:225–226, 1:226F
preparation of cocoa fiber composite 1:225
selection of cutting parameters 1:225, 1:225T
methods 3:61
nondestructive methods 3:59
residual stress measurement 3:61
exponential functions 1:152
external honing 1:104
single helical gear 1:104F
extra low interstitials (ELI) 2:291
extreme pressure (EP) additive 1:4
extruding nonferrous alloys 2:241
extrusion process 1:221, 1:524
advantages 1:524
applications 1:525
limitations 1:524–525

F
fabrication
of microelectrode for batch production 1:286
processes of microelectrode 1:282–283
hybrid process 1:294–296
MBEDG 1:291–292
micro-rods by self-drilled holes 1:293–294
micro-turning process 1:292–293
off-centering 1:295F
reverse EDM 1:294
rotating sacrificial disk 1:290
stationary BEDG 1:290–291
WEDG 1:283
of 3D composite polymer scaffolds 3:122F
face-centered cubic metals (fcc) 1:427, 2:199, 3:6–7, 3:8
failed bolt, observations on 2:307–308
metallurgical analysis 2:308–309
visual inspection 2:307–308
failure adhesion 3:306–307
failure analysis 2:31
first law of electrolysis 3:360
second law of electrolysis 3:360
FAS see fluoroalkylsilanes (FAS)
fast Fourier transform (FFT) 1:6, 1:29
fatigue 1:431
behavior 1:219
properties of laser peening 1:422–425
thermal fatigue properties of laser-treated surfaces 2:140
fatty acid monolayers 3:282
fcc see face-centered cubic metals (fcc)
FDM see finite difference method (FDM)
Fe–C equilibrium diagram 2:226F
feedstock preparation 1:516
fuzzy inference system 1:233
FVM see finite volume method (FVM)
FWHM see full width at half maximum (FWHM)

G

GA see genetic algorithm (GA)
GAE see gas assisted etching (GAE)
galvanic series of metals 3:477
galvanized steel 3:47, 3:308
failure mechanisms in 3:187–188
galvanizing bath, presence of elements in 3:184–185
surface preparation for 3:54
gamma phase wires 1:244–247, 1:245F
cross-section of electrode wire 1:246F
large-scale diagrammatic view 1:246F
perspective view and longitudinal section 1:247F
sheath layer and core 1:247F
gas assisted etching (GAE) 1:331–332
gas carburization 2:73, 2:78
advantages 2:79
atmospheric conditions for 2:78–79
carbon potential 2:79
carburizing process 2:78
carburizing reactions 2:78
carrier gases 2:79
disadvantages 2:79
safety measures for 2:79–80
gas carburized steel, carburizing cycle of 2:90F
gas carburizing process 2:78F
gas cluster ion beam (GCIB) 1:164–166
gas dielectric medium 1:177–180, 1:179F
gas nitried EN41B steel 2:131
causes and remedies 2:120
effects on mechanical properties 2:127–129
effects on wear and corrosion resistance 2:131
industrial applications 2:131–132
nitriding of non-ferrous alloys 2:108–109
post-treatment step 2:119–120
pre-treatment step 2:117–119
recent developments in 2:132
set-up 2:119
structural alloys 2:120–123
thermodynamics of nitriding 2:109–110
gas nitriding of H13 tool steel 3:158–177
experimental procedures 3:160
nitrided layer characterization 3:160
nitriding cycle used for samples 3:160
sample preparation 3:160
FE analysis 3:162
geometric model 3:162
initial and boundary conditions 3:163
material model 3:162–163
simulation model 3:162
solution procedure 3:163–164
modeling of 3:160–162
governing equations and constitutive behavior 3:162
numerical solution for the mathematical model 3:162
theoretical background 3:161–162
nitriding kinetics
consideration of multiple nitriding on 3:176
consideration of surface texture on 3:175
nitriding treatment, consideration of profile geometry on 3:175–176
results and discussions 3:164
effect of profile geometry on nitriding treatment 3:166–167
influence of multiple nitriding on nitriding kinetics 3:170–171
influence of surface texture on nitriding kinetics 3:164
surface preparation 3:164
gas-carburized steels, heat treatment of 2:90
gas-carburized tool steels 2:101–102
gaseous nitrogen 2:425
gas-phase phenomena 2:113–114
Gaussian distribution 1:311, 3:290
Gaussian power intensity distribution 1:346
Gaussian surfaces 3:290
Gary–Chapman layer 3:361, 3:362F
GCIB see gas cluster ion beam (GCIB)
G-code 1:397T
GEA see General Electric Infrastructure Aviation (GEA)
gear 1:506
generating process 1:508
gear burnishing 1:109–111, 1:118–119T
advantages 1:111
applications 1:111
limitations 1:111
gear burnishing machines 1:110
double-die gear burnishing machine 1:112F
single-die gear burnishing machine 1:110–111, 1:112F
gear drives 1:94
gear failures, modes of 1:94T
gear finishing, by AFM 1:112, 1:118–119T
advantages 1:115–116
AFM machines 1:113
AFM parameters 1:115
applications 1:116–117
components of AFM machine 1:113–115
limitations 1:116
principle of AFM process 1:112
types of AFM process 1:112
one-way AFM 1:112
orbital AFM process 1:113
two-way AFM 1:112–113
gear finishing process, goals of 1:95F
gear grinding 1:98, 1:118–119T
advantages 1:101
applications 1:101
form or non-competitive 1:98–99
generative grinding 1:99–100
using cup-shaped wheel 1:100
using dish-shaped wheel 1:100
using rack-tooth worm wheel 1:100–101
using threaded wheel 1:100
limitations 1:101
selection of parameters 1:101
types of 1:98
gear grinding process, different versions of 1:99T
gear hobbing 1:508–510, 1:510, 1:510F
advantages 1:510
applications 1:511
limitations 1:510–511
manufacturing of miniature gear 1:511F
mini-hob cutters 1:511F
gear honing 1:103–104, 1:103T, 1:118–119T
advantages 1:105
applications 1:105
external honing 1:104
internal honing 1:104
internal honing over external honing, advantages of 1:104–105
limitations 1:105
tools used in 1:104T
gear lapping 1:101–102, 1:118–119T
advantages 1:102
applications 1:103
limitations 1:102
typical lapping process 1:102F
gear manufacturing processes 1:96–97
types of 1:97T
gear materials 1:97
abrasives for 1:103T
gear quality
international standards for 1:97
typical applications of 1:97T
gear shape 1:457–458
gear shaving 1:105–107, 1:118–119T
advantages 1:109
applications 1:109
limitations 1:109
mechanism of 1:106–107
types of 1:107
axial or conventional 1:107
diagonal 1:107–108
plunge 1:108–109
tangential or underpass 1:108
gear shaving cutters, types of 1:107F
gear shaving process, axes arrangement in 1:106F
gears
classification of 1:94
materials, manufacturing and quality of 1:96–97
microgeometry of 1:95–96
surface quality of 1:95
gel 3:327–328, 3:328
General Electric Infrastructure Aviation (GEA) 1:419
generalized Hele–Shaw (GHS) flow model 1:450
generative grading 1:99–100
using cup-shaped wheel 1:100, 1:100F
using dish-shaped wheel 1:100, 1:100F
using rack-tooth worm wheel 1:100–101, 1:101F
generative grinding (continued) using threaded wheel 1:100, 1:100F
genetic algorithm (GA) 1:19, 1:43, 1:87
geometric simulation model 1:197
geometrical parameter of coating 3:52
GFRPs see glass-fiber-reinforced plastics (GFRPs)
GHS flow model see generalized Hele-Shaw (GHS) flow model
glass fiber composite 1:204
glass mat thermoplastics (GMT) 1:219
glass-fiber-reinforced plastics (GFRPs) 1:204, 1:206, 3:48
glass-inserted mold 1:444
glow discharge carburizing 2:80
glycerin 3:363–364
GMT see glass mat thermoplastics (GMT)
good adhesion property 3:306
gooseneck casting see hot chamber die casting process
GP zones see Guinier–Preston (GP) zones
GRA see gray relational analysis (GRA)
graded coatings 3:45
graded cooling 2:387
grain boundaries 2:85F
coarsening 2:8
size effect 2:63, 2:63F
graphite 1:276–277
graphitization 2:256
graphitizing annealing 2:251
gravimetric method 3:51
gray irons 2:248
see also cast irons; malleable irons
heat treatment 2:249–251
annealing 2:251
austempering 2:253–255, 2:254F, 2:255F
hardening and tempering 2:252–253
martempering 2:255
normalizing 2:252
stress relieving 2:249–251
surface hardening 2:255–256
gray relational analysis (GRA) 1:223–224, 1:226
application in optimization of cut characteristics 1:224–225, 1:225F
determination of optimal joining condition 1:226
experimental methods and measurements 1:225
gray relational coefficient calculation 1:226–227, 1:227F
gray relational grade 1:227–228, 1:227T, 1:228F
gray system theory 1:223–224
green coating 3:50
green cutting 1:80
abrasive belt grinding 3:194
conventional grinding 3:193–194
grinding burn 1:367
grinding cracks 2:105
prevention 2:105
grinding fluid 1:101
grinding wheel speed 1:101
grinding wheel wear 1:379
grasper mode 1:41
Grossmann method 2:56–57, 2:60
correlation between 2:61
multiplying factors 2:67F
ground–equipment–support interactions 1:41
guided running wire 1:283

H

H subdivision state 2:383
H temper 2:340F
variation 2:340
H$_2$S treatment 3:16–19
H13 steel 2:235F
hadfield steel 2:197–199, 2:198F, 2:198F
Hall–Petch relation 2:9
hand lay-up 1:220, 1:220F
hand stoning process 3:194
HAp see hydroxyapatite (HAp)
hard chrome coatings 3:49
see also hot-dip galvanized coatings
carbidc tools 3:230–231
deposition 3:232–233
design 3:231F
effect on workpiece surface finish 3:235–239
materials and design 3:232
multilayer 3:233–234
nanocomposite 3:235
nanolayer 3:234–235
hard machining
see also electrical discharge machining (EDM)
applications 1:51–53
industrial applications 1:53
industrial applications of hard-part machining 1:52F
workpiece clamping 1:52–53
cooling techniques applications 1:80–83
cryogenic machining 1:80–83
dry machining 1:80–83
semi-machining 1:80–83
solid lubricants application 1:83–86
vegetable oils application 1:83–86
modeling 1:75–76
cutting force modeling 1:75–76
Rs modeling 1:78–80
tool wear progression modeling 1:76–78, 1:78F
hard turning 1:69, 1:86
bands 2:61–62, 2:62F
boron effect 2:67–69, 2:68F, 2:69F
carbon content effect 2:51F
criterion for measuring 2:52–53
mechanism of heat removal during quenching 2:53
critical cooling rate 2:51F
estimation from chemical composition and austenite grain size 2:66–67
factors affecting 2:62–63
austenitizing temperature and time 2:63–64
carbon content effect 2:64–65
grain size effect 2:63, 2:63F
hardness vs. 2:51–52
lominy end-quench test 2:60–61
rockwell hardness 2:52F
hardened steel 1:47–48
applications
and machining characteristics 1:49–50
of types 1:50F
machining characteristics 1:50F, 1:51F
optimization studies in 1:86–88
soft and hard 1:48F
hardening 1:47–48, 2:29–31
double 2:87–89, 2:88F
do c ductile irons 2:264
factors influencing 2:31
adequate carbon content to produce hardening 2:31
austenite decomposition to produce pearlite, bainite, and martensite structures 2:31–32
heating rate 2:32
soaking time 2:32
temperature of heating 2:32
of gray iron 2:252–253, 2:253F, 2:254F
case study on 2:253
heat treatment 2:19–20
of malleable irons 2:257–258, 2:259F, 2:260F
single
with core refinement 2:87, 2:88F
without core refinement 2:87, 2:87F
hard metals 2:449
hardness, low 2:103
hardness traverse 2:56–57
hard-part machining (HPM) 1:47–48
hardened steel 1:48F
industrial applications 1:52F
hard-part turning (HPT) 1:48–49
qualitative comparison with grinding 1:48–49, 1:49F
HASL see hot-air solder leveling (HASL)
Hastellov Y2:398, 2:416
H-atom diffusion 3:16
HAZ see heat-affected zone (HAZ)
hazardous process 3:364
HB see Brinell hardness number (HB)
HCCIs see high-chromium cast irons (HCCIs)
HCHCr see high carbon high chromium (HCHCr)
HDM see hole-drilling method (HDM)
HDPE 1:443–444
head forging 2:311
heat preservation 2:385–386, 2:386F
heat resistance 2:270
heat treatment 2:273
high silicon irons 2:273
heat treatment 2:2, 2:273, 2:292–293, 2:337, 2:422
of Al alloys 2:341–347, 2:373
Al–Cu alloy 2:378–380, 2:379F
all-purpose aluminum alloys 2:374, 2:374F
annealing 2:368, 2:368F
for cast alloys 2:358–363
classification 2:373, 2:373F
dimensional changes 2:368
dispersion hardening and dislocation mechanisms 2:381–382, 2:382F
equilibrium precipitation process 2:375–377, 2:375F, 2:376F
heat treatment furnaces 2:341–347
over-aging 2:380–381, 2:381F
regression treatment 2:382, 2:383F
2:383T
SS and equilibrium precipitation 2:374–375
strengthening 2:347–350
stress relief 2:363–368, 2:367F
sub-classification of solutionizing and aging 2:373–374
for wrought alloys 2:357–358
alloying see alloying
in α-Ti alloys 2:292–293
in CP Ti and 2:292–293
in near α-Ti alloys 2:291
in α/β-Ti alloys 2:301–305
annealing 2:20
austenitic graphitic irons 2:271
in β-Ti alloys 2:311–317
of cast irons
carbon content in matrix 2:248–249
critical temperature ranges 2:248, 2:248F, 2:249T
hardenability 2:249
shape and size of castings 2:249
surface oxidation and decarburization 2:249
of copper see copper, heat treatment of corrosion resistant high silicon irons 2:273–276
defects 2:47–48
overheating 2:48
quench cracks 2:47–48
ductile irons 2:260–262
goal-carburized steels 2:90
of gray irons 2:249–251
hardening 2:29–31
heat resistant high silicon irons 2:273
high-chromium white irons 2:280–281
of malleable irons 2:256–257
of nickel alloys see nickel alloys, heat treatment of nickel–chromium white irons 2:277–279
normalizing 2:27–29
practical aspects of 2:231–232
austenitization 2:233
cooling mediums for quenching 2:233
design, machining, and stress relief 2:232
heating furnaces 2:232–233
preheating 2:233
quality of 2:234–236
time and temperature of tempering 2:233–234
processes, types of 2:25F
process variables 2:9–11
austenitization 2:10–11
quenching and quenching medium 2:36–39
stages of 2:2
heating step 2:2–3
soaking stage 2:4
of steel 2:4–8
common heat treating processes 2:9
effect of excess heating beyond homogenization 2:8–9
production of homogeneous austenite 2:8
steel casting 2:211–212, 2:211F
tempering 2:59–42
TRIP 2:208
troubleshooting 2:236–237
forging die with premature failure (case study) 2:239–240
importance of 2:236–237
ISO VH13 steel 2:238–239
VF800AT steel 2:237–238
heat-affected zone (HAZ) 1:250–257, 1:251F, 1:391
healing furnaces 2:232–233
heating rate 2:3, 2:384
heating temperature 2:3–4, 2:384
heat-treatable alloys 2:341, 2:341T
heat-treatable aluminum alloys 2:354
heat-treatment processes 2:180–181
of AF1410 steel 2:185–186, 2:185F, 2:186F
of Ni4Co steel 2:184–185
HEL see Hugoniot elastic limit (HEL)
Hele-Shaw flow model 1:444, 1:444–445, 1:489
helical gears 3:373–374, 3:373F
Helmholtz double layer 3:361
Helmholtz equation 2:160–161
HER see hydrogen evolution reaction (HER)
Hertzian contact 1:135, 1:135–136
Hertzian contact theory 1:122–123
hexavalent chromium 3:322–323
hexavalent chromium 3:150
hexavalent non-chronic coatings 3:320
HIE wire see high eagle (HIE) wire
HIE wire see high falcon (HIF) wire
high carbon high chromium (HCHG) 1:186
high eagle (HIE) wire 1:236
high Falcon (HF) wire 1:238
high hawk (HIH) wire 1:238
high pressure die casting process (HPDCP)
see die casting process
high real (HIR) wire 1:238
high sonic (HS) wire 1:238
microstructure of 2:216
high strength temperature resistant (HSTR) 3:359
high temperature stabilization 2:271
high temperature thermo-mechanical treatment (HT TMT) 2:392
high tensile strength wires 1:247–248
molybdenum wire 1:248
MolyCarb wire 1:248
steel core wires 1:248–249, 1:248F, 1:249F
tungsten wire 1:248
high velocity oxy-fuel (HVOF) coating of 3:43, 3:56
coatings 3:209
comparison with thermal spray techniques 3:209–210
ConiCrAlY coating 3:196
HAp–TiO2 coatings 3:200
as-sprayed surface finish 3:213
history 3:207
mechanism of coating 3:208–209
post-deposition surface finish 3:215–217
pre-deposition surface finish 3:211–213
principle 3:207
process technical details 3:207–208
spray parameters 3:207–208
surface finish guidelines for 3:210–211, 3:212F
spray and surface finish 3:211–213
surface finish guidelines for HVOF spraying 3:210–211, 3:212F
calculation of, characteristic parameters 3:210T
high velocity oxygen-fuel (HVOF) coating of nickel based alloys 3:96–110
corrosion testing of coating 3:109
experimental 3:98
analytical expression for residual stress 3:99
electro chemical tests 3:99
fracture toughness by indentation tests 3:98
residual stress measurements by curvature method 3:98–99
findings and discussions 3:101–102
coating morphology and metallurgical changes 3:101–102
electro chemical testing 3:105–107
laser-treated coatings 3:103–105
laser treatment of coating and numerical study 3:109
literature review and background 3:96–98
mathematical modeling 3:99–101
numerical solution 3:101
single layer coating 3:101–102, 3:109
two layer coating 3:102–103, 3:109
high-alloy irons 2:248, 2:277F
see also ductile irons
heat treatment 2:269–271
abrasion resistant high-alloy white irons 2:276–279
austenitic graphitic irons 2:269–271
heat resistant high silicon irons 2:273
heat treatment of corrosion resistant high silicon irons 2:273–276
oxidation resistant high-aluminum irons 2:276
homogeneous palladium coating
homogenization
homogeneous austenite
HOMMELWERKE TURBO RAUHEIT V 6.14
homogenized and quenched (HQ) sample
see HIH wire
high-temperature X-ray diffraction (HTXRD)
see HIS wire
high-resolution transmission electron microscopy (HRTEM) 3:287F
hot dip galvanizing process
continuous hot-dip galvanizing processes
failure mechanisms in galvanized steels
galvanizing of AHSS 3:185–187
presence of elements in galvanizing bath
3:184–185
research and development activities in
3:183–184
hot-dip zinc coating
physico-chemical properties of metal oxide containing 3:30–31
preoxidation of steel 3:29–30
hot-work die steel 2:190
HP see hot pressing (HP)
HP9–4–30 steel 2:184
HPM see hard-part machining (HPM)
HT see hard-part treatment (HT)
HQ sample see homogenized and quenched (HQ) sample
HRTEM see high-resolution transmission electron microscopy (HRTEM)
HSM see high-speed machining (HSM)
HSS see high speed steels (HSS)
HSS-Co twist drill 1:211
HISTR see high strength temperature resistant (HISTR)
HT see high-temperature (HT)
HT TMT see high temperature thermo-mechanical treatment (HT TMT)
HTXRD see high-temperature X-ray diffraction (HTXRD)
Hugoniot elastic limit (HEL) 1:409–410
HVOF see high velocity oxy-fuel (HVOF)
hybrid design 1:143–144
hybrid finishing process 1:98
hybrid materials 3:119
hybrid process 1:294–296
continuous machining process of array micro-holes 1:296–298
finishing process 3:371
hybridized material removal process 1:270
LIGA-micro-EDM hybrid machining process 1:298–300, 1:300F
micro-turning-micro-EDM hybrid machining process 1:294–296
self-drilled holes-TF-WEDG hybrid machining process 1:296
superfinishing process 3:372
hybrid technology see combination technology
hybrid tool, model for 1:146F
hydrazine based plating bath 3:6
hydrochloric acid 3:222
hydrofluoride 3:226
hydrogen 3:14, 3:207–208
applications in hydrogen purification 3:14–16
permeability 3:14
permeation properties 3:15–16
activation energy for 3:18F
function of pressure gradient 3:16F
literature permeability results 3:17T
separation 3:8
hydrogen evolution reaction (HER) 3:87, 3:92–93
hydrolysis 3:328
hydrophobic coatings 3:49
hydrophobic surfaces 3:282
droplets slides on 3:283F
hydrophobicity and surface finish 3:137–148
effect of dust accumulation on PV cell efficiency 3:137
historical background 3:137
polycarbonates (PCs) 3:137–138
crystallization process of 3:138
solid-liquid interface and PC-liquid
acetone 3:142–143
AFM micrographs 3:142–143
Fourier transform infrared (FTIR) technique 3:147
hydrophobicity assessments 3:145–147
scanning electron micrographs 3:144
surface roughness 3:144–145
X-ray diffraction (XRD) technique 3:147
superhydrophobic surfaces
fabrication methods and technologies of 3:140–142
theoretical models 3:138
effect of chemical treatment and
roughness on surface hydrophobicity 3:139
fundamentals 3:138
rough surfaces, classification of 3:140
self-cleaning surfaces 3:140
Wenzel and Cassie–Baxter states 3:139–140
Young’s equation 3:138–139
hydroxide solutions 3:200
hydroxyapatite (HAp) 3:196, 3:349, 3:350
X-ray diffraction pattern 3:353F
hyperelastic material theory 1:147–148
hypereutectoid steels 2:2–3, 2:16F
annealing of 2:23, 2:23–24
hypophosphite 3:4
hysteresis of contact angle 3:278–279, 3:297–298
critical factors influencing part quality in I: 480
injection molding cycle I: 479–480, 1:479F
modeling of I: 491–492
cooling phase of injection molding I: 496
feedstock properties and mixing simulation I: 491–492, 1:492–493
filling phase of injection molding I: 495
fundamentals of governing equations and boundary conditions I: 493–494
melt flow behavior in micro-size channel I: 494–495
packing phase of injection molding I: 495–496
optimization techniques for I: 485F
simulation-based I: 485F
principles of I: 1479
processing variables of I: 486F
injection molding equipment I: 467–468
auxiliary equipment for I: 473
feedstock mixing mechanism I: 468
injection molding machine (IMM) I: 467–468, 1:468–470
based on injection unit I: 469F
clamping unit I: 473
experimental setup of control system for I: 487F
horizontal I: 468, 1:469F
hybrid I: 468, 1:469F
mold design I: 470–472, 1:471F
part design for micro-PIM I: 473
runner and gating system design I: 472–473, 1:472F
screw design for I: 470
vertical I: 468, 1:469F
inorganic sealers 3:199–200
aluminum–phosphate 3:199–200
chemical treatment 3:200
chemical vapor deposition 3:200
electroplating 3:200
enameling 3:200
molen metal or oxide penetration 3:200
sealing using glass formers 3:200
sol–gel process 3:200
instrumental effects 1:417
integrated automation system 1:53–54
intelligent algorithms 1:487
intended metal 3:330
intercritical annealing 2:22–23
interelectrode gap (IEG) 3:359–360, 3:369
intergranular attack (IGA) 3:370
intergranular corrosion 2:200–201
interlamellar spacing 2:252
intermediate thermal-mechanical treatment (ITMT) 2:391–392
internal honing 1:104
external spur gear 1:105F
internal turning 1:26, 1:27, 1:28F
International Alloy Development System (IADS) 2:337–338
International Annealed Copper Standard (IACS) 1:237, 1:244, 2:399
International Centre for Diffraction Data (ICDD) database I: 3160
International Cocoa Organization (ICCO) I: 1204
International Nickel Company (INCO) 2:416
International Organization for Standardization (ISO) gear standard I: 1507
international tool steel classification standard 2:219–221T
interrupted surfaces (I surfaces) I: 71
interstitial solid solution 2:84F
interstitial-free steel (IF steel) 3:183
recrystallized structure of 2:26F
intrinsic stresses 3:57
INVAR 36 alloy powders 1:476F
ion beam figuring (IBF) I: 1164–1166
ion implantation 2:125, 3:202–203
ion shot ELID (ELID IV) 1:370
principle of 1:371F
iron I: 1281
allotropy 2:218–222
flow of carbon in 2:82–85
and iron–carbide equilibrium 2:83F
iron–carbon alloy 2:2, 2:3–4
iron–carbon equilibrium 2:222
iron–carbon martensites 2:19–20
iron–iron carbide equilibrium 2:74, 2:75F
iron–nitrogen system 2:109–110
binary phase diagram 2:110F
IRRAS see infrared reflection-absorption spectroscopy (IRRAS)
ISO gear standard see International Organization for Standardization (ISO) gear standard
ISOMAX 2:241
isostrain 1:213
isostress 1:213
isothermal annealing 2:20–22, 2:21F
isothermal transformation behavior 2:6–7, 2:7–8
ISS see Indian Standard Specifications (ISS)
Italian Gear standard 1:507
ITMT see intermediate thermal-mechanical treatment (ITMT)
laser interference lithography (LIL) 3:125, 3:125–126
laser machining (LM) 1:344, 3:122, 3:124
laser conduction limited heating 1:345
laser nonconduction limited heating 1:345
laser micromachining 1:330–331
laser optics 1:166
advantages and disadvantages and applications 1:418–419
AFM surface topography 1:424F
confined ablation process 1:413F
conventional shot peening 1:409
future trends 1:435
laser beam irradiating material surface 1:410F
laser-peened materials relaxation behavior 1:431
grain and dislocation evolution during isothermal annealing 1:434F
mechanical relaxation of residual stress 1:431
thermal relaxation of residual stress 1:431–435
laser systems 1:411, 1:412–413F
magnifications of 6061-T6 alloy 1:430F
mechanical and metallurgical effects
constriction properties 1:427–429
deformation mechanism 1:425–427
fatigue properties 1:422–425
LY12CZ specimens 1:425F
metallurgical modifications during 1:419–422
tensile properties 1:425–427
welded joints 1:429–431
residual stresses
crystallite size and micro-strain 1:417–418
distribution 1:416F, 1:424F
generation 1:413–414, 1:414F
measurement of residual stresses 1:414–415
SEM photographs of laser-peened surfaces 1:423F
shock wave formation 1:411–413
shot peening vs. 1:410
stress corrosion cracking test results of SLIS304 1:429F
laser peening without coating (LPWC) 1:416
laser polishing 1:166
laser polymerization, materials for 3:117–118
hybrid materials 3:119
organic photopolymers 3:118–119
photoinitiators 3:118
Si–8 3:119
laser shock peening (LSP) principle 3:123,
3:123F
laser surface
ablation 3:72
of ceramics 3:125
modification 1:408
treatment 2:137, 2:140
experimental studies 2:137–139
phosphorous bronze 2:139, 2:141–143, 2:151
Rene 41 2:140–141, 2:146–151, 2:151
yttria-stabilized zirconia 2:139–140, 2:143–146, 2:151
laser surface texturing (LST) 3:123
laser treatment, modeling of coating 3:107–108
laser treatment of coating and numerical
study 3:109
laser(s) 2:137
beam intensity distribution 2:137
energy 1:411
engraving 3:203
gas-assisted nitriding 2:132
machining 1:221–222
melting/ablation parameters 2:138, 2:138F
remelting 3:196, 3:196
shot processing 1:409–410
surface modification 1:408
systems for laser peening 1:411
texturing 3:71–72, 3:72
alumina tiles 3:72–73
experimental work 3:74–75
PC sheet 3:72
phosphorous bronze 3:73–74
results and discussion 3:75–78
laser-assisted machining (LAM) 1:331, 3:124, 3:124–125
laser-based surface texturing techniques 3:122–126
laser-matter interactions, spectrum of 3:122F
laser-treated coatings 3:103–105
laser-treated layer 3:73–74
laser-workpiece interaction mechanism 1:345
lath martensite microstructure 2:92F
layer removal (LR) 3:58–59
LC-ALPHAIL see CO2 laser
LCD see liquid crystal display (LCD)
L/D ratio see length–diameter (L/D) ratio
lead-free ferroelectric ceramics, SPS in 3:352–354
lead-free materials 3:349
lead-free solders 3:222
least-squares (LS) 1:88
Lehner diagrams 2:110–112
hypothetical surface reactions 2:111F
representation of 2:111F
LEI see lower detector (LEI)
LEIS see low energy ion scattering (LEIS)
length–diameter (L/D) ratio 1:31
leveling effect 3:369
LGVs see light goods vehicles (LGVs)
Lifshitz–van der Walls components 2:139F
light alloys 2:430–431
Light Amplification by Stimulated Emission of Radiation (LASER) 1:330–331
light goods vehicles (LGVs) 2:442
LIL see laser interference lithography (LIL)
lime-alumina-borosilicate glass see E-glass fiber
line scanning 3:273
linear micro-scratch tester 2:138

K
kerf variations 1:223
different in process 1:223, 1:223F
variations 1:223
kerosene 1:278
Kirchhoff-Fourier equation 2:161
Kirkendall effect 3:11
knitting fiber 1:218
KNN see potassium sodium niobate (KNN)
KOEPER gantry loader 1:53–54
Kriging 1:484
KTN see potassium tantalate niobate (KTN)
kurtosis 1:12

L
lacquer 3:149
LAM see laser-assisted machining (LAM)
Lame equations 2:161
lamella 3:209
primary morphologies 3:209F
lamina 1:213, 1:214F
Langevin function 1:148
lapping process 3:194
large step-over size 1:127F
LASER see Light Amplification by Stimulated Emission of Radiation (LASER)
laser ablation 3:122
laser beam processing for surface modifications see laser surface: treatment
laser bending 1:352
experimental 1:352
mathematical analysis 1:352–354
results and discussions of 1:359–361
self-annealing effect 1:359, 1:361
laser cutting process 1:348–350
cut quality assessment 1:351
evaluation of cut quality 1:351
factorial analysis 1:351–352
experimental method 1:349–350
thermal analysis 1:349–350
lump parameter analysis for Kerf size 1:350–351
results and discussions of 1:357–359
laser drilling 1:345–347
experimental method 1:347
hole quality assessment 1:347–348
evaluation of hole geometric features 1:347–348
factorial analysis 1:348
results and discussions of 1:354–357
qualitative analysis 1:355–357
quantitative analysis 1:357
linear polycondensation 1:217
linear polymers 1:217
linear variable differential transformer (LVDT) 3:61
line-of-sight process 3:233
liquid carburization 2:73, 2:76–77
 advantages 2:77
 carburizing process
 high temperature baths 2:77
 low temperature baths 2:76–77
 disadvantages 2:77
liquid carburizing baths
 composition of 2:77
 sodium cyanide content in 2:77
liquid cooling stage 2:53
liquid crystal display (LCD) 3:113–114, 3:114, 3:114F
liquid diffusion 3:42
liquid helium (LHe) 3:217–218
liquid nitrogen (LN) 2
liquid metal-assisted cracking (LMAC)
 low-pressure PIM (L-PIM) 2
 see low-pressure PIM (L-PIM)
liter per minute (lpm) 3:445, 3:445F
literature review 2:252
liptane 2:387
lithography
 Galvanof ormung Abformung (LIGA) 1:232
 LIGA–micro-EDM hybrid machining
 process 1:298–300, 1:300F
 lithography 3:292, 3:292F
 lithography, electroforming and molding
 1:511, 1:521–522
 advantages 1:522
 applications 1:522
 limitations 1:522
LM see laser machining (LM)
LMA see liquid metal-assisted cracking (LMAC)
LMD see laser machining (LM)
LMD see laser machining (LM)
LMD see laser machining (LM)
L-shaped mandrel 1
lme see laser machining (LM)
LMAC see liquid metal-assisted cracking (LMAC)
local maxima 2
local minimas 1:233
local minima 1:233
local thermal stability 3:15
local wavelength 1:223
loose-abrasive grinding 1:154–157
 conventional loose-abrasive grinding
 1:154–157
 unconventional loose-abrasive grinding
 1:157–158
loose-abrasive polishing 1:159–162, 1:159
lotus effect 3:277
low alloy steels, carburization of 2:94
 chromium–nickel steel 2:94
 molybdenum–nickel steel 2:94–96
lost energy ion scattering (LEIS) 3:8
low temperature tempered (LT) martensite 2:91
low temperature tempering 2:387
low temperature thermo-mechanical treatment (LT TMT) 2:392
low-alloy special-purpose tool steels
 2:217–218F, 2:219–221F
 lower detector (LEI) 3:91F, 3:92
 low-molecular-weight polymers 1:481
 low-pressure injection molding (LPI M) 1:467
 low-pressure PIM (L-PIM) 1:521
LPIM see low-pressure injection molding (LPI M)
L-PIM see low-pressure PIM (L-PIM)
lpm see liter per minute (lpm)
LPWC see laser peening without coating (LPWC)
LR see layer removal (LR)
LS see least-squares (LS)
LSP principle see laser shock peening (LSP) principle
LST see laser surface texturing (LST)
LT TMT see low temperature thermo-mechanical treatment (LT TMT)
LTS–KNN see (Na0.52K0.44Li0.04)0.51(Nb0.86Ta0.06Sb0.08)0.49O3 (LTS–KNN)
LTT martensite see low temperature tempered (LTT) martensite
LIVDT see linear variable differential transformer (LIVDT)
LPG see liquid petroleum gas (LPG)
LPM see liquid polymer molding (LPM)
machining
 1:17, 2:270
 machine–fixture–tool–work system
 (M–F–T–W system) 1:74
 machining 1:26, 1:27, 1:55, 1:70, 3:193
 conditions 1:1–4
 cutting fluids 1:1–4
 method of fluid application 1:1–4
 tool vibration 1:4–6
 factors affecting cut quality 2:222–223
 kerf width 2:222–223
 surface roughness 2:223–224, 2:224F
 of natural fiber-reinforced composite 1:221–222
 parameters 1:29, 1:30
 parameters effect 1:13–17, 1:19T
 on surface roughness 1:18T
 safety considerations 1:222
 machining processes, general characteristics of 3:2597, 3:259–260F
 macro–micro flow model 1:445
 macro flow model 1:444
 macro-gears 1:506
 shape 1:458–461
 macro-geometry of insert 1:56–58
 macroroughness 1:223
 macro-stress 3:8–39
 magnesium alloys 2:448
 magnesium stearate 3:285
 magnetic resonance imaging (MRI) 1:206
 magnetic spoiling 2:196
 magnetorheological (MR) fluid 1:161
 magnetorheological finishing (MRF) 1:161
 magnetron 3:233
 sputtering 3:233
 malleable iron 2:248
 see also cast irons; gray irons
 heat treatment 2:256–257, 2:256F
 bainitic heat treatment of malleable irons 2:258
 blackheart malleable iron 2:257
hardening and tempering of malleable irons 2:257–258
 martempering of malleable irons 2:258
 surface hardening of pearlitic malleable irons 2:258–260
 whiteheart malleable iron 2:256–257
 mallealizing annealing 2:256
 mandrel 1:219
 testing 3:51–52, 3:51F
 wrapping 1:220
 manganese 2:14, 2:265, 2:271
 MAPP see methyl acrylate propadiene (MAPP)
 embrittlement in 2:207–208
 marine coating 3:150
 martempering 2:43–44, 2:44F
 of gray iron 2:255
 of malleable irons 2:258
 finish 2:424
 formation 2:90–91
 heating of 2:226
 microstructure 2:31F, 2:156
 morphologies 2:91–92
 tempering, effect of 2:92
 transition carbides, role of 2:92
 martensite orientation (MR) 2:325–326
 martensite start (Ms) temperature 2:255, 2:264, 2:266, 2:282
 martensite transformation curve 2:45F
 martensitic transformation (MT) 2:3–4, 2:19–20, 2:222–224, 2:322
 in Ti–Ni alloys 2:322–324
 mass flow rate 1:449
 mass transport phenomenon in ECM 3:369
 master decomposition curve (MDC)
 1:480–481
 evaluation of apparent activation energy 1:481–482
 multistep burnout process 1:482–483
 single-step burnout process 1:481
 master sintering curve (MSC) 1:481
 material laser ablation 3:122, 3:122F
 material migration 1:314–317
 material removal process
 conventional process 1:268
 hybridized process 1:270
 nonconventional process 1:268–270
 ANOVA for 1:307
 mathematical flow model 1:449–450
 ANSYS CFX flow model 1:450–451
 MoldFlow flow model 1:450
 suggestion non-Newtonian viscosity model 1:451
Matlab 3:273
matrix material, composite types based on 1:212
CMC 1:212
MMC 1:212
PMC 1:212–215
MBD see multibody dynamics (MBD)
MBEDG see moving block electrical discharge grinding (MBEDG)
MCS see Monte Carlo step (MCS)
MD see molecular dynamics (MD)
MDC see master decomposition curve (MDC)
MDM see modified distance method (MDM)
MDN250 steel 1:16
mean contact stress 1:137
mean residual (MR) defined 1:482
mechanical attrition 2:175f; 2:178
mechanical finishing 3:192–193
effect of finishing on coatings 3:194–195
grinding 3:193–194
modeling finishing process 3:195
polishing techniques 3:194
turning 3:193
mechanical pen method 3:288
mechanical polishing 3:307–308
mechanical property 2:374, 2:382
mechanical stress 2:241
mechanical surface treatment, recent advances in 2:171–179
peening 2:171–172
laser peening 2:174
shot peening 2:171–172
warm peening 2:173–174
SMAT 2:174–176
mechanism of surface
nanocrystallization by SMAT 2:176
microstructure characterization of the SMAT 2:176
properties of SMAT surface layer 2:176–178
SMAT process 2:175–176
mechanical twins (MTs) 1:426–427
mechanistic modeling 1:76
medium-carbon low-alloy steels 2:181, 2:188, 2:188f
chromium–molybdenum steel 2:192
forging quality steel 2:181, 2:182–183f
medium-carbon chromium–vanadium steel 2:192
nanoscale precipitations hardenable steel 2:187–188
Ni–Cr structural steel 2:189–192, 2:190f; 2:191f
precipitation hardened martensitic steels 2:181–184, 2:184f
press hardenable ultrahigh-strength steel 2:186–187
Si-modified 4340 steel 2:188–189
medium-frequency (MF) 3:233
MEKP see methyl ethyl ketone peroxide (MEKP)
MEMS see micro-electromechanical systems (MEMS)
MEMS/NEMS see micro/nano electromechanical systems (MEMS/NEMS)
MEO see micro-arc oxidation (MEO)
meso-gears 1:506
metal composition 2:264–266
deposition 3:3
ELID grinding for 1:374–377
fibers 1:209
metal composite in hot-dip galvanized coating 3:25–26
implication for performance of zinc alloy coating 3:30–31
electrochemical characteristics of zinc coating 3:32–35
enhancement in surface topographical characteristics 3:31–32, 3:31f
physico-chemical properties of metal oxide 3:30–31
metal injection molding (MIM) 1:467, 1:511, 1:516–518, 1:517f
advantages 1:518
applications 1:518
inspection and quality control of MIM products 1:498–499
limitations 1:518
potential causes and remedies of common defects in 1:498f
process capabilities 1:517–518
metal injection molding feedstock, composite and formulation of 1:478f
metal injection molding powders 1:475f
metal matrix composites (MMCs) 1:10, 1:212, 1:232, 2:446, 3:51
metal oxide direct blending of molten bath with 3:29
incorporation methods 3:28–29
direct blending of molten bath 3:29
formation of predeposited metal oxide layer 3:28–29
preoxidation of steel prior to hot-dip zinc coating 3:29–30
vacuum coating techniques 3:29
influence on hot-dip galvanization process 3:26–28, 3:28f
metal powder 1:475–476
characteristics and test standard 1:476f
metal-cutting process 1:27
metallic coatings 3:183
metallic gear materials 1:506–507
metallurgy and numerical results 3:167–169
metallurgical analysis 2:307, 2:308–309
metallurgical modifications during laser peening 1:419–422
metamaterials 3:119–121
metamodel-based method 1:484
methyl acetylene propadiene (MAPP) 3:207
methyl ethyl ketone peroxide (MEKP) 1:220
methyltrimethoxysilane (MTMS) 3:141
MF see medium-frequency (MF)
Mg-alloys, heat treatment of 2:36, 2:367
micro channel fabrication and experimental design 1:451–452
micro depth of cut of a polishing tool 1:132–133
micro depth of cut of a single grain 1:131–132
micro drilling 1:268
micro flow model 1:444–445, 1:446–447
micro gear shape 1:461
with 0.5 mm teeth 1:462
with 1.0 mm teeth 1:461
micro part fabrication 1:442–443
micro plastic injection molding 1:442–444
custom-made vertical injection molding machine 1:447–448
injection mechanism 1:448
mold design 1:448
plasticizing unit and injection mechanism 1:447–448
factors affecting 1:446
micro flow model factors 1:446–447
pressure 1:446
size 1:447
temperature 1:446
viscosity in micro molding 1:447
flow model 1:444
macro flow model 1:444
macro – micro flow model 1:445
macro flow model 1:444–445
viscosity for micro injection molding 1:446
viscosity model 1:445–446
flow observation 1:444
literature reviews 1:447
machine for 1:443–444
macro and micro gear shape molding 1:457–461
straight, reverse ‘T’ and cross ‘+’ micro channel flow 1:448–450
experiments and simulation for cross ‘+’ micro channel 1:455–456
experiments and simulation for straight channel 1:452
mathematical flow model 1:449–450
micro channel fabrication and experimental design 1:451–452
micro wire EDM 1:333
micro/nano electromechanical systems (MEMS/NEMS) 1:505–506
micro/nano polishing 1:339
micro/nano textures 3:83–84
microalloyed steels, carburization of 2:96–98
niobium-microalloyed steel 2:98
vanadium-microalloyed steel 2:97–98
microalloying elements 2:97
micro-arc oxidation (MEO) 3:202
micro-crack 1:312–314
microdrilling 1:324, 1:328
electrode material for 1:277
function and types 1:272–274
of nonconductive ceramics 1:333–334
assisting electrode 1:334
modified distance method (MDM) 1:87
modified two-domain Tait PVT model 1:450
MOEMS see micro-opto-electro-mechanical systems (MOEMS)
mold cavity 1:183F
mold steel 2:217–218F
carburization of 2:102
molded parts, quality of 1:486
Moldflow second order model 1:445
Moldflow software 1:457–458, 1:458, 1:472–473, 1:491
molding process 1:219, 1:219F
bladder molding 1:219
chopper gun 1:220
compression molding 1:219–220 filament winding 1:220–221
hand lay-up 1:220
mandrel wrapping 1:220
pultrusion 1:221, 1:221F
resin infusion 1:221
carbohydr 1:220
vacuum bagging 1:220
molecular dynamics (MD) model 1:196–197
simulation 1:164–166
molten bath, direct blending with metal oxides 3:29
molten metal penetration 3:200
molybdenum disulfide 1:85–86, 1:185–186
molybdenum high-speed tool steels 2:217–218F
molybdenum hot work tool steels 2:217–218F
molybdenum nitride 2:115–116
molybdenum sulfide 1:4, 1:212
molybdenum wire 1:248
molybdenum–nickel steel, carburization of 2:94–96
MolyCarb 1:248
Monel 2:398, 2:416
monoscale roughness profiles 3:300–301
Monte Carlo method 1:445
Monte Carlo step (MCS) 2:353–354
Mössbauer spectroscopy 2:432
mottling, in surface coatings 3:154
moving block electrical discharge grinding (MBEDG) 1:283, 1:291–292
MP-100TC see microphotonics: digital hardness tester
MPA see multiphoton absorption (MPA)
MPD layer see minor plastic deformation (MPD) layer
MPL see multiphoton lithography (MPL)
MPL experimental procedure 3:117, 3:117F
MQL see minimum quantity lubrication (MQL)
MR see martensite reorientation (MR); mean residual (MR)
MR fluid see magnetorheological (MR) fluid
MRDE see micro-rotating disk electrode (MRDE)
MRF see magnetorheological finishing (MRF)
MRSI see magnetic resonance imaging (MRI)
MRR see material removal rate (MRR)
Ms temperature see martensite start (Ms) temperature
MSC see master sintering curve (MSC)
MT see martensitic transformation (MT)
MTMS see methyltrimethoxysilane (MTMS)
MTs see mechanical twins (MTs)
µM flow channel, physical model for 1:494F
µM machines and specifications 1:470F
µ-PIM see powder micro injection molding (µ-PIM)
µSLA see micro-stereolithography (µSLA)
µSPIMM see microscaffold plastic mold insert MIM (µSPIMM)
µ-TAS see micro-total analysis system (µ-TAS)
multibody dynamics (MBD) 1:490
multicomponent coatings 3:45
multilayer electrode (MLE) 1:191–192
multilayer hard coatings 2:333–234, 2:343F
multilayered coatings 3:45
multimedia 1:500
multi-objective differential evolution (MODE) algorithm 1:87
multiphoton absorption (MPA) 3:114
multiphoton lithography (MPL) 3:111, 3:114–116
diffraction limit 3:116
experimental procedure 3:117, 3:117F
experimental set-up 3:116–117
multiphoton polymerization 3:114–116
multiphoton polymerization 3:114–116, 3:117F
multiple nitriding, influence of on nitriding kinetics 3:170–171
carbonate of hardening and nitrogen concentration profiles 3:173–174
morphology of nitride layers 3:171
XRD analysis 3:171–173
multiple radii inserts 1:8
multiscalad roughness profiles 3:301–303
multishot injection molding 1:467
multi-span Euler–Bernoulli models 1:27–28
multi-stage solutionizing 2:392–393
multivariate mean square error (MMSE) approach 1:87–88

N

NA samples see naturally aged (NA) samples

(Na_{0.5}K_{0.5}Li_{0.44}Mo₃O₁₂)(Na_{0.8}Ta_{0.2}Si_{0.8})(O₃ (LTS-KNN) 3:355, 3:356F
nano surface generation 1:365–366
nano ZnO 3:27
nanocomposite hard coatings 3:235
nanocrystalline structure 1:420–421
nanocrystallization 2:176

natural features of metals/alloys in 2:176F

nano-electromechanical systems (NEMS) 3:359

nanofluids 1:4

nanolayer coating 3:231

nanoscale precipitations hardenable steel 2:187–188

nanostructures 2:176

application of GRA technique 1:224–225, 1:225F
fiber-reinforced polymer (FRP) 1:206–207
maching 1:221–222
manufacturing process 1:217

types of composite 1:212

applications 1:210

classification of natural fibers 1:208

natural-fiber composites 1:208, 1:209, 1:218, 1:219
naturally aged (NA) samples 2:356

NBTT see sodium bismuth titanate (NBTT)

NBTT problem see nominal-the-best (NBTT) problem

NC-AFM see noncontact AFM (NC-AFM)
Nd:YAG see neodymium-doped yttrium aluminum garnet (Nd:YAG)

NDM see near-dry machining (NDM)

near Ti alloys 2:291
flow stress 2:296F
heat treatment in 2:291
near dry EDM 1:180, 1:180F

near-dry lubrication see minimum quantity lubrication (MQL)

near-dry machining (NDM) 1:3

near-infrared (near-IR) 1:411

near-net shape (NNS) products 2:301

near tool 1:1–2

necklace recrystallization 2:313

Nelumbo nucifera 3:295F

NEMS see nano-electromechanical systems (NEMS)

neodymium-doped yttrium aluminum garnet (Nd:YAG) 1:411

net-shape microfabrication 1:467

future research outlook 1:499–500

injection molding equipment 1:467–468

auxiliary and other equipment for 1:473

clamping unit 1:473
feedstock mixing mechanism 1:468

injection molding machine (IMM) 1:468–470
mold design 1:470–472
part design for micro-PIM 1:473
ranner and gating system design 1:472–473

drew design for 1:470

microinjection molding process, optimization and simulation of 1:483–486
analytical and numerical methods for 1:496
application of computer modeling in 1:489–490
optimization methods 1:486–489
parameter control in 1:484–486
process simulation and quality characteristics for defect-free parts, in 1:496–497
micrometal powder injection molding 1:466–503
PM part fabrication and applications 1:498
fabrication capabilities of μMIM 1:498
inspection and quality control of MIM products 1:498–499
market trend of PIM products 1:499
powder injection molding (PIM) process 1:473–476
debinding process 1:480
feedstock preparation 1:475–476
injection molding process 1:479
sintering process 1:483
neural network model 1:87
neuro-fuzzy system 1:255, 1:255F, 1:256F; 1:257F, 1:258F
neutral elements 2:290
new hot work steels, application and 1:498
nickel alloys, heat treatment of 1:498
Niobium powder injection molding (NiPIM) process 1:473–476
Ni–Cr structural steel 2:189–192, 2:190F
Ni–Ti powders 3:198
nickel alloys, heat treatment of 2:416
annealing 2:416
nickel-base superalloys 2:418–419
precipitation hardening 2:417–418
solution annealing 2:416–417
stress equalizing 2:417
stress relieving 2:417
Nickel Titanium Naval Ordnance Laboratory 3:336
nickel–boron 3:224
nickel–phosphorus layer 3:224, 3:225F
Ni-hard irons see high-alloy nickel–chromium white irons
Nimonics 2:416
niobium 2:271
niobium–mircroalloyed steel, carburization of 2:98
NITI 3:336
binary NITI, spark plasma sintering of 3:340–342
methods of processing 3:337–338
conventional sintering (CS) 3:338–339
hot isostatic pressing (HIP) 3:339
powder metallurgy 3:338–339
vacuum arc remelting (VAR) 3:338
vacuum induction melting (VIM) 3:338
stress–strain curve for 3:337F
supercastility 3:337, 3:339
ternary NiTi, spark plasma sintering of 3:342–345
NiTi shape memory alloys (NiTi SMA) 3:336–337
Nitinol 3:336
'nirolloy' steels 2:109
nitric acid 3:323
nitrated layer characterization 3:160
'nitrated zone' see diffusion zone
nitridding 2:191–192
kinetics 2:113–117
steels 2:108
thermodynamics of 2:109–110
AIN system 2:113
Fe–N system 2:109–110
Lehrer diagrams 2:110–112
nitridding kinetics 2:113–117
Ti–N system 2:112–113
nitridding cycle used for samples 3:160
nitridding kinetics
consideration of multiple nitridding on 3:176
consideration of surface texture on 3:175
nitridding kinetics, influence of multiple nitridding on 3:170–171
comparison of hardness and nitrogen concentration profiles 3:173–174
morphology of nitride layers 3:171
XRD analysis 3:171–173
nitridding kinetics, influence of surface texture on 3:164
morphology of nitried layers 3:164–166
X-ray diffraction (XRD) measurement and phase analysis 3:164
nitridding potential 3:158–159
nitridding treatment, consideration of profile geometry on 3:175–176
nitridding treatment, effect of profile geometry on 3:166–167
design modifications and recommendations 3:169–170
geometric features selected for current study 3:167
metallography and numerical results 3:167–169
nitrogen diffusion zone 2:108
NNS products see near-net shape (NNS) products
nodular graphite iron 2:248
niobium iron see ducile iron nominal-the-best (NBT) problem 1:87–88
nonabrasive polishing 1:164–166
nonconforming bodies 1:121–122
noncontact AFM (NC-AFM) 3:247
noncontact monitoring system 1:29
noncontact radiation techniques 1:62
noncontact surface measurement techniques 3:244–245
coherence scanning interferometry (CSI) 3:246, 3:246F
confocal microscopy 3:244–245
electron microscopy 3:247–248
Scanning Electron Microscopy (SEM) 3:248, 3:248F
Transmission Electron Microscopy (TEM) 3:248, 3:248F
focus variation microscopy 3:245–246
scanning probe microscopy (SPM) 3:246–247
atomic force microscopy (AFM) 3:245F; 3:247
scanning tunneling microscopy (STM) 3:247, 3:247F
nonconventional material removal process 1:268–270
nondestructive methods
see also destructive method
diffraction method 3:60
ex situ 3:59–60
in situ 3:59, 3:60F
micro-RS 3:60–61
PLPS 3:61
non-dominated sorting genetic algorithm-II (NSGA-II) 1:87
non-electrical parameters 1:279
see also ferrous alloys
age-hardening treatment 2:32–34
aluminum alloys 2:447–448
annealing of 2:34
application of heat treatment principles in Mg-alloys 2:36
cobalt-bonded tungsten carbides 2:449–451
heat-treat principles of 2:35–36
magnesium alloys 2:448
martesite formation in 2:34–36
microstructure and phase composition 2:125–127
nitridding atmosphere 2:127
time and temperature 2:127
substrate composition 2:127
thermo-mechanical treatment for 2:392
titanium alloys 2:448–449
nonheat-treatable alloys 2:341, 2:341F, 2:343F
non-Hertzian contact 1:135
nonmetallic gear materials 1:506–507
nonmetallic materials, for gear manufacturing 1:97
non-sludging electrolytes 2:305
distinctions between annealing and 2:28–29
ductile irons treatment 2:262–264
grey iron 2:252, 2:252F, 2:253F
normalization of original data 1:226, 1:227T
optimization methods
application of, in injection molding process 1:486–489
optimization studies in hardened steel machining 1:86–88
optimizer overhead (OO) 1:87
orange peel, in surface coatings 3:154
ordered phase 2:290
ordinary differential equation (ODE) 1:493
ordinary differential equation (ODE) 1:493
organic adsorbed sulfur on metal 3:283
organic light emitting diodes (OLED) 1:157–158
organic photopolymers 3:118–119
organic sealers 3:199
see also inorganic sealers
organosilicon-derivative monolayers 3:282–283
ORMOCER® 3:119, 3:119F
orthogonal array (OA) design of 1:487
Ostwald–de Waele relationship 1:491
OTS see octadecyltrichlorosilane (OTS)
over aluminizing 3:199
over burning 2:384
over-aging 2:380–381, 2:381F
overcut 1:281–282, 1:305–306
overhead flood filling 1:2
overheating or burning 2:226
oxidation
post-treatments 2:119–120
resistant high-aluminum irons 2:276
oxide penetration 3:200
oxide polishing suspension (OPS) 1:252
oxygen free high conductivity copper (OFHC) 2:399

P
PA see polysodium acrylate (PA)
PACE see plasma-assisted chemical etching (PACE)
pack cementation process 3:199
PACM see programmable array scanning confocal microscopy (PACM)
PACVD see plasma-assisted chemical vapor deposition (PACVD)
PAG see polyalkylene glycol (PAG)
palladium 3:6, 3:82
see also ferrous alloys; non-ferrous alloy(s)
Pd binary alloys 3:8–10
PdAg alloys sequential and co-deposition 3:8–10
PdAu alloys sequential deposition 3:11
PdCu alloys sequential deposition 3:10–11
PdRu alloys sequential and co-deposition 3:10–11
surface properties of ternary alloys and 3:19–20
Pd ternary alloys 3:11–13
PdAgAu alloys 3:12–13
PdAgCu alloys 3:13
PdCuAu alloys 3:13–14
PdCoCuAl alloys 3:13–14
PdCuAu alloys 3:13–14
Parallel-Beam Glossometer 3:155
parameter planning process 1:136
parking effect 2:378
partial annealing 2:368
partially sintered WC/Co tool electrode 1:396F
Particle Dynamic Analyzer 3:155
particle size distribution (PSD) 1:476
particle swarm optimization (PSO) 1:87
particle-reinforced polymer (PRP) 1:212, 1:212–215
particulate reinforced aluminum matrix composites (PRAMC) 2:395–396
PAS see plasma activated sintering (PAS)
passive damping 1:29–30
patenting 2:21, 2:21–22
PC see pulse current (PC); polycarbonates (PCs)
PC sheet 3:72, 3:75–78
contact angles measurement 3:77T
optical image 3:76F
SEM micrographs 3:77F
transmittance data for laser-treat workpiece 3:78F
PCA see principal component analysis (PCA)
PCBN see polycrystalline cubic boron nitride (PCBN)
PCCD see polycrystalline diamond (PCCD)
PCVM see plasma chemical vaporization machining (PCVM)
PDF see probability density function (PDF)
PDMS see polydimethylsiloxane (PDMS)
PE see polyethylene (PE); pseudoelasticity (PE)
peak current 1:279
pearlite reaction curve 2:15
pearlitic steels 2:436–437
PECH processes see pulsed-ECH (PECH) processes
peck-drilling 1:324
PECM see pulse electrochemical machining (PECM)
pectin 1:205
PEEK see polyether ether ketone (PEEK)
peening 2:171–172
laser peening 2:174
shot peening 2:172–172
residual stress and microhardness analysis 2:172–173
surface of morphology 2:172
warm peening 2:173–174
relation between temperature and fatigue life 2:174
residual stress in warm peening 2:174
warm peening procedure 2:174
pellet grinding 1:158
PEO see plasma electrolytic oxidation (PEO)
perm-selectivity 3:14
perovskite structure 3:352–353
PET see poly(ethylene terephthalate) (PET)
Petrov-Galerkin finite element method 1:445
PFZs see precipitate-free zones (PFZs)
phase transformation 2:3
phosphate coating 3:42, 3:323
phosphate–zinc coating 3:323
phosphating 3:323–325
phosphor bronzes 2:409
phosphoric acid 3:323
phosphorous 2:14
see also Rene 41; Yttria-stabilized zirconia
contact angle measurements 2:144F
cross-section laser-ablated layer 3:83F
friction coefficient for laser ablated 2:144F, 3:83F
laser ablated layer 2:143F
laser ablated surface 2:142F, 3:82F
phosphorus decoxidized copper 2:399
photofluidization lithography 3:125
photoinitiators 3:116, 3:118
cationic 3:118
radical 3:118
photolithography 3:141
photoluminescence piezo-spectroscopy (PLPS) 3:61
photonic metamaterials 3:120
photopolymerization 3:116
free-radical 3:116
online monitoring of 3:116–117
photopolymerized structure 3:116
photosensitive polymer 3:317
photovoltaic (PV) cells 3:72
physical evaporation 3:41
physical metallurgy principles 2:218–222
austenitizing and quenching 2:224–226
carbon steels 2:222
iron allotropy 2:218–222
martensitic transformation 2:222–224
multiple temperings 2:228–231
secondary hardness 2:227–228
tempering 2:226–227
advantages and limitations for 3:44T
nitride coatings 2:132
physical evaporation 3:41
plasma sputtering 3:41
π theorem 3:31
pickling 3:180
picoseconds laser 3:73–74
PID controller 1:139
piezoelectric materials 3:349
Pilot experiments 1:31
PIM process see powder injection molding (PIM) process
plain carbon steels 2:11, 2:434–435
for gear manufacturing 1:97
plain EDM wires 1:238–239
aluminum–brass wire 1:240, 1:240F
brass wire 1:239–240, 1:240F
copper wire 1:238–239, 1:240F
plain-carbon steel 2:181
planarization rate 1:162–163
planned cylinder pressure 1:140F
plant fiber 1:209–210, 1:209F
plasma 1:234–235
plasma-assisted nitriding technology 2:125
plasma carburizing 2:73, 2:80–81, 2:81F
advantages 2:81
carburizing process 2:80–81
control of carbon supply and case depth 2:81
plasma chemical vaporization machining (PCVM) 1:164
plasma electrolytic oxidation (PEO) 3:202
plasma enhanced CVD technique 3:41
plasma etching 1:164
plasma nitriding (PN) 3:203–204
plasma spray 3:43
plasma spraying (PS) 3:207
plasma sputtering 3:41
plasma-arc spraying 3:43
plasma-assisted chemical etching (PACE) 1:164
plasma-assisted chemical vapor deposition (PCVD) 3:447
high strain rate 1:420–421
laser peening causes 1:419
plastic injection molding 1:467
frameworks for optimization of 1:485F
plastic mold 2:223F
plastic mold steels 2:216
plasticizing unit 1:447–448
plate martensite microstructure 2:92F
platers 3:361
Platinum wire 3:99
plowing force 1:60
ployvinylidene fluoride (PVDF) 1:52I
PLPS see photoluminescence piezo-spectroscopy (PLPS)
plunge gear shaving 1:108–109
PM electrode see powder metallurgy (PM) electrode
P/M gear 1:511
P/M tool electrodes 1:396F
PMC see polymer matrix composites (PMC)
PMEDM see powder-mixed dielectric EDM (PMEDM)
PMEDM see powder mixed electrical discharge machining (PMEDM)
PMMA see polymethyl methacrylate (PMMA)
PMND-EDM see powder mixed near-dry electrical discharge machining (PMND-EDM)
PN see plasma nitriding (PN)
pneumatic ring actuator 1:147F
polarization test 3:282
polarization-electrical (P-E) field hysteresis loop 3:355, 3:355F
Polish–Czech project 2:165–166
polishing parameter planning 1:136–137
polishing path planning 1:126–129
polishing stone topography, generation of 1:130–131, 1:131F
polishing techniques 3:194
buffing 3:194
burnishing 3:194
hand stoning 3:194
honing 3:194
lapping 3:194
superfinishing 3:194
tumbling 3:194
polishing tool 1:123
and part 1:122F
polishing/deburring robot 1:134F
polishing/deburring toolhead design 1:143–144
experiment on ring actuator stiffness 1:150–152
hybrid design 1:143–144
ring actuator modeling 1:147–149
simulation of ring actuator stiffness 1:149–150
toolhead dynamic modeling 1:144–147
pollution-free process 3:364
poly vinyl chloride (PVC) 1:204
poly(ethylene terephthalate) (PET) 3:292, 3:292F
polyaddition 1:217–218
polyalkylene glycol (PAG) 2:55, 2:56F
poly-alloys 3:224
polycarbonates (PCs) 3:137–138
chemical structures of 3:138F
crystallization process of 3:138
PC sheet 3:72
polycondensation 1:217
poly crystalline cubic boron nitride (PCBN) 1:50–51
poly crystalline diamond (PCD) 1:16, 1:55, 1:55–56, 1:292–293
poly crystalline diamond coatings 3:48
polydimethylsiloxane (PDMS) 3:72
elastomer surface 3:141
poly-c-carboxloane scaffolds 3:113F
polyester 1:220
polylether ether ketone (PEEK) 1:216–217, 3:196, 3:212–213
polyethylene (PE) 1:204
polyonization 2:24–25
polymer crystallization process 3:138
polymer matrix composites (PMC) 1:212, 1:212–215
fiber-reinforced polymer (FRP) 1:212–215
particle-reinforced polymer (PRP) 1:216–217
polymer(s) 1:217
polyaddition 1:217–218
polycondensation 1:217
polymerization 1:217
quenchants 2:55–56
quenching 2:188
polymeric binders, depolymerization of 1:481
polymeric gels 3:328
polymerization 1:217
poly(methyl methacrylate) (PMMA) 1:448, 1:521, 3:72, 3:125–126
polyoxymethylene-based binder 1:476
polypropylene (PP) 1:204
polysodium acrylate (PA) 2:55
polytetrafluoroethylene (PTFE) 2:424, 3:45
polyurethane (PU) 1:217, 1:224–225
polyurethane (PU) coating 3:48, 3:49, 3:325–327
powder injection molding (PIM) process
powder coatings
potentiostat
potentiodynamic polarization tests
porous zirconia-coated stainless steel tubes
post-deposition surface finish
portable handheld surface finish instrument
porous zirconia-coated stainless steel tubes (YSZT) 3:13
portable handheld surface finish instrument 3:243, 3:244F
post-deposition surface finish 3:215–217, 3:216F
potassium chloride 3:226
potassium sodium niobate (KNN) 3:353, 3:355
potassium tantalate niobate (KTN) 3:353
potentiodynamic polarization tests 3:53, 3:53F
potentiotstat 3:53
powder coatings 3:41–42
powder injection molding (PIM) process 1:467, 1:473–476
debinding process 1:480, 1:480T
master decomposition curve (MDC), development of 1:480–481
solvent 1:480, 1:480T
thermal 1:480, 1:480T
feedstock preparation 1:475–476
binder 1:476–477
formulation and characterization 1:477–479, 1:479T
metal powder 1:475–476
industrial sectors and areas of PIM applications 1:497T
injection molding process 1:479
critical factors influencing part quality in 1:480
injection molding cycle 1:479–480
principles of 1:479
market trend of PIM products 1:499
part fabrication and applications 1:498
fabrication capabilities of μMIM 1:498
inspection and quality control of MIM products 1:498–499
sintering process 1:483
applications 1:513–514
route 2:289
sintering process on microscopic scale 1:513F
powder metallurgy (PM) electrode 1:395
powder mixed dielectric (PMD) 1:180
see also electrical discharge machining (EDM)
PMND-EDM 1:190–191
powder addition to EDM and micro-EDM 1:182–186
powder mixed ultrasonic-assisted EDM 1:188–190
powder mixed near-dry electrical discharge machining (PMND-EDM) 1:190–191, 1:192F, 1:193F
powder mixed dielectric EDM (PMEDM) 1:398
powder mixed-micro EDM process 1:196
powder generation industry 3:213
power law model 1:445, 1:491–492
power supply 1:274
pulse waveform and discharge energy 1:275–276
RC-type pulse generator 1:274–275, 1:274F
transistor-type pulse generator 1:274, 1:274F
PP see polypyrrole (PP); pulse reverse (PR)
PRAMC see particulate reinforced aluminum matrix composites (PRAMC)
Praxair Surface Technologies 3:207
PRC see pulsed reverse current (PRC)
pre-aged AA6181A alloy 2:356
precipitate-free zones (PFZs) 2:351–352
precipitation 2:3–4
martensitic steels 2:181–184, 2:184F
stainless steel 2:204–205, 2:204F, 2:205F
precision cutting 1:224–225, 1:225, 1:225T
forging 1:525
linear saw 1:225
precision optics, manufacturing technologies for 1:154–170
precursor substances 3:327–328
pre-deposition surface finish 3:211–213
preheating 2:4, 2:233
preoxidation of steel prior to hot-dip zinc coating 3:29–30
prepreg 1:219
press casting process 2:241
pressure 1:411
pressure-assisted sintering 3:197
pressure-less sintering and annealing 3:197–198
sintering 3:347
pressure tracking control 1:139
pressure trajectory tracking 1:141F
pressure volume temperature (PVT) 1:450, 1:495
pressure-assisted sintering techniques 1:483
pressureless sintering techniques 1:483
pressure-swirl atomizer 3:151F, 3:154
Preston’s formula 1:155
pre-treatment processes, effect of 3:54
primary chutter 1:26–27
principal component analysis (PCA) 1:87–88
process optimization 1:21
process simulation 1:193–194, 1:195
profile geometry, on nitriding treatment 3:166–167, 3:175–176
profilometer 2:439
programmable array scanning confocal microscopy (PACM) 3:244–245, 3:245
projection stereo-lithography (PSL) 3:111, 3:112–114
protection 2:385–386, 2:386F
PRP see particle-reinforced polymer (PRP)
PS 1:443–444
PSD see particle size distribution (PSD)
pseudoelasticity (PE) 2:325–326
PSL see projection stereo-lithography (PSL)
PSO see particle swarm optimization (PSO)
PPS see porous stainless steel (PSS)
PTFE see polytetrafluoroethylene (PTFE)
PU coating see polyurethane (PU)
coating pulse current (PC) 3:361–362, 3:367F
pulse electrochemical machining (PECM) 3:367, 3:367F
pulse generators 1:274
analysis of RC type 1:235F
analysis of WEDM 1:234–236, 1:235F
chip size and load at different spark energy 1:236F
pulse plating 3:86–87, 3:87
pulse reverse (PR) 3:86–87, 3:87, 3:89
pulse waveform of controlled pulse generator 1:389F
and discharge energy 1:275–276
pulsed electric current sintering (PECS) see spark plasma sintering (SPS)
pulsed reverse current (PRC) 3:361–362
pulsed-ECH (PECH) processes 3:372
pulse-OFF time 1:279
pulse-ON time 1:279
pultrusion 1:221, 1:221F
pure iron and crystalline structures 2:225F
equilibrium phases of 2:225F
PV cell efficiency, effect of dust accumulation on 3:137
PV cells see photovoltaic (PV) cells
PVA/PVOH see polyvinyl alcohol (PVA)/polyvinyl alcohol (PVA)/polyvinyl alcohol (PVA)/polyvinyl alcohol (PVA)
PVC see poly vinyl chloride (PVC)
PVD see physical vapor deposition (PVD)
PVD/PE see polyvinylidene fluoride (PVDF)
PW-based binder system 1:475F
pyrolysis 1:480
Q
Q-switched laser system 1:411
quality assurance 2:368–369
issues 3:57
quality of deposition, factors affecting 3:361–362, 3:362F
deposition material selection 3:364
quantitative methods of measuring hardenability 2:56–57
critical diameter 2:56–57, 2:57F
ideal critical diameter 2:59–60, 2:59F, 2:60F
severity of quench 2:57–59, 2:58F, 2:59F

R
rack shaving process 1:107
radial actuation 1:144–145
radial basis function 1:484
radial force 1:59
radial-feed WEDG 1:283, 1:283F
see also tangential-feed WEDG (TF-WEDG)
radio-frequency (RF) 3:233
radius of curvature of the part 1:123
Raman spectroscopy (RS) 3:58
random rough surface 3:300
random surface roughness static analysis 3:289–290
rate-limiting process 3:11
Rayleigh, Lord 3:153
RBA see Rotary Bell Atomizer (RBA)
RC see resistance capacitance (RC)
RCF see rolling contact fatigue (RCF)
RC-type pulse generator 1:274–275, 1:274F
reactive ion etching (RIE) 1:164, 1:330
reansthetization 2:272
recrystallization 2:25–26, 2:27F
annealing 2:24–27
kinetics 2:26F
temperature 2:403
recursive method 1:128, 1:129
redraw wire 1:238
refrigeration 2:272
regression
equation models 1:31
treatment 2:382, 2:383F, 2:387F
regression and re-aging (RRA) 2:374
reinforcement 1:207
remelting 3:196
electron beam remelting 3:196
laser remelting 3:196
TIG remelting 3:196
removing and reshaping methods 3:258F
Rene 41 2:140–141, 2:146–151, 2:151
see also phosphor bronze;
Yttria-stabilized zirconia
EDS data 2:150F
laser-treated 2:148F, 2:149F
X-ray diffractogram 2:150F
renewable source 1:210
replacement schedule 3:320
analytical expression for 3:99
in castings 2:249
crystallite size and micro-strain 1:417–418
experimental measurement 3:58–59
generation 1:413–414, 1:414F
measurement 1:414–415, 3:61
by curvature method 3:98–99
mechanical relaxation 1:431
numerical estimation 3:61–68
quality issues 3:57
sources 3:56–57
thermal relaxation 1:431–435
thermal spray coating techniques 3:56F
resin infusion 1:221
resin transfer moulding (RTM) 1:218
resistance capacitance (RC) 1:274
resistance to tempering 2:228
resistor 1:274
response surface methodology (RSM) 1:16, 1:69, 1:233, 1:484
retained austenite 2:45–47, 2:224
stabilization of 2:234
subzero treatment 2:46–47
retrogression and re-aging (RRA) 2:358, 2:389
reverse EDM (REDM) 1:294
reverse ’T’ shape micro channel, experiments and simulation for 1:454, 1:454–455
M05 § S05 reverse ’T’ micro channel 1:454
modified cross viscosity model for 1:455
reverted austenite 2:207
RF see radio-frequency (RF)
RIE see reactive ion etching (RIE)
ring actuator deformation simulation 1:149F
ring actuator displacement model 1:148F
ring actuator modeling 1:147–149
ring actuator stiffness 1:149F
experiment on 1:150–152
simulation of 1:149–150
ring diaphragm model 1:148F
rinsing 3:222
robotic deburring control 1:139–143
robotic polishing and deburring 1:121–153
contact area-based path planning 1:121–122
contact area 1:122–124
contact mechanics 1:121–122
continuous polishing path 1:124–126
coverage area map (CAM) 1:124
polishing path planning 1:126–129
step-over size 1:126
contact stress-based control 1:133–134
air cylinder pressure control modeling 1:307
air spindle speed control modeling 1:307–138
combined control system 1:308–139
contact stress modeling 1:134–135
friction torque modeling 1:135–136
polishing parameter planning 1:136–137
pressure tracking control 1:139
robotic deburring control 1:139–143
robotic polishing/deburring system 1:134
polishing/deburring toolhead design 1:143–144
experiment on ring actuator stiffness 1:150–152
hybrid design 1:143–144
ring actuator modeling 1:147–149
simulation of ring actuator stiffness 1:149–150
toolhead dynamic modeling 1:144–147
surface roughness modeling 1:129–131
micro depth of cut of a polishing tool 1:132–133
micro depth of cut of a single grain 1:131–132
polishing stone topography, generation of 1:130–131
surface roughness, prediction of 1:133
rolling contact bearing 2:197
rolling contact fatigue (RCF) 1:73–74
room temperature (RT) 2:319F, 3:178
Rotary Bell Atomizer (RBA) 3:151–152, 3:152F
rotary gear shaving, diagonal type of 1:107–108, 1:108F
rotary shaving process 1:107
axial or conventional type of 1:107F
diagonal type of 1:108F
rotating sacrificial disk 1:290
rough coatings 3:50
rough surface 3:286–287, 3:288F
classification of 3:140
profile 3:289F
typology of 3:289F
roughness, topography of 3:286–289
characteristics of 3:286–289
random surface roughness static analysis 3:289–290
roughness of fractal surfaces 3:290–291
rough substrate and modification, creation of 3:291–292, 3:293–294
colloid accumulation and layer method 3:293
electrochemical reaction and deposition method 3:293
etching and lithography 3:292
sol-gel process 3:292–293
rough turning 1:1
roughness, surface 3:248–249
roughness and surface wettability, relationship between 3:294–295
analysis of contact angle 3:295
composite solid–liquid–air interface 3:296–297
effect of edge and variation of surface slope 3:297–298
effect of surface area on 3:295–296
flat surface 3:295
calculation of contact angle for selected surfaces and surface modification 3:298
2D periodic profiles 3:298
3D surfaces 3:298–300
periodic profile 3:298
saw-toothed periodic profile 3:298
surfaces modification to achieve highest contact angle 3:300–301
monoscaled roughness profiles 3:300–301
multiscaled roughness profiles 3:301–303
roughness measurement parameters 3:290
roughness of bondcoat 3:213, 3:215T
RRA see regression and re-aging (RRA); retrogression and re-aging (RRA)
RS see Raman spectroscopy (RS); residual stress (RS)
RSM see response surface methodology (RSM)
RT see room temperature (RT)
RTM see resin transfer moulding (RTM)
runner and gating system design 1:472–473, 1:472F
rutile 2:289

S

SAE see Society of Automotive Engineers (SAE)
SAMs see self-assembled monolayers (SAMs)
sandblasting 1:157–158, 1:158F
sanding 3:307
sandwich coatings 3:45
sapphire 1:213
saturated calomel reference electrode (SCE) 3:99
saturated liquid solution 2:375
sausage 2:109
grain size 2:63
estimation of hardenability 2:66–67
saw-toothed periodic profile 3:298
SB see shear bands (SB)
SB criterion see smaller-the-better (SB) criterion
scanning electron micrographs 3:144
scanning electron microscope (SEM) 3:286F, 3:287F, 3:288–289
scanning electron microscopy (SEM) 3:244, 3:246–247
atomic force microscope (AFM) 3:245F, 3:247
SCC see stress corrosion cracking (SCC)
SCE see saturated calomel reference electrode (SCE)
SCEA see side cutting edge angle (SCEA)
Scherrer equation 1:417
scrolled-free turning 1:55
SCT see shallow cryogenic treatments, (SCT)
SDF see simultaneous method (SDF)
SE see superelasticity (SE)
sealing 3:199
anodic coatings 3:199
inorganic sealers 3:199–200
organic sealers 3:199
porosity 3:199
using glass formers 3:200
secondary carbides 2:228, 2:231F
secondary chatter 1:5
secondary cooling 3:57
secondary electron imaging (SEI) 3:92
secondary hardening 2:40, 2:41–42, 2:228
secondary hardness 2:227, 2:227–228
SDECM see simultaneous micro-EDM and micro-ECM (SDECM)
SEI see secondary electron imaging (SEI)
semitest laser sintering (SLS) 3:112, 3:113F
self-affinity 3:291
self-annealing effect 2:137
self-assembled monolayers (SAMs) 3:282, 3:284F
self-cleaning surfaces 3:140
self-drilled holes
EDM micro-rods by 1:293–294
self-drilled holes–TF-WEDG hybrid machining process 1:296
self-excited chatter 1:26–27
self-monitoring capability 1:37
self-similarity surfaces and diagrams, investigating 3:291
self-supported membranes 3:14
SEM see scanning electron microscope (SEM); scanning electron microscopy (SEM)
semicrystalline polysaccharide 1:205
semidry machining 1:80–83
semi-ellipsoid part surface 1:128F
semi-solid forming, new short T6 heat treatment for 2:390–391
sensitization process 3:4
sequential two-photon absorption 3:115, 3:115F
series-pattern micro-disk electrode fabrication 1:288–290
severe plastic deformation (SPD) 1:418
severity of quench 2:57–59, 2:58F, 2:59T
SFE see stacking fault energy (SFE)
SFs see stacking faults (SFs)
shadowgraphy technique 3:155
shallow cryogenic treatments, (SCT) 2:425, 2:427
shape memory alloys (SMA) 2:321–322, 3:336, 3:338
NiTi 3:336–337
phase diagram 2:322, 2:326F
Ti–Ni alloys 3:338
MT in 2:322–324
precipitation in 2:324–326
shape recovery 2:328, 2:332, 2:333F
shaving allowance 1:106–107
shaving cutter, in gear shaving 1:105–106
serration of 1:106F
shaving stock 1:106–107
shear bands (SB) 1:426
shar.stress 1:449–450
sheet molding compound (SMC) 1:518
shock resistant tool steel, carburization of 2:102
shock waves 1:425
shock-resistant tool steels 2:217–218T
short-pulse laser 1:331
shock peening 1:409, 1:409F, 2:171–172
conventional 1:409
laser peening vs. 1:410
residual stress and microhardness analysis 2:172–173
and rolling 3:203
surface of morphology 2:172
shot velocity, surface roughness vs. 2:172F
SHT see solution heat treatment (SHT)
side cutting edge angle (SCEA) 1:67
signal-to-noise (S/N) ratio 1:14, 1:32, 1:487, 1:487–488
experimental results for surface roughness 1:337
plots for mean 1:34F
silanes 3:283–285
Silent Tool 1:75
Si-modified 4340 steel 2:188–189
silicon bronze, heat treatment of 2:413–414
silicon micromachining 1:328–330
bulk micromachining 1:329–330
surface micromachining 1:330
silicon nitride 1:370, 1:373F
silicon wafer, ELID grinding of 1:380–383
effect of grain size for 1:388F
variation of ground surface roughness of 1:387F
silicon wafer thinning process 1:386F
silk fiber 1:208
silver 3:7
silver tungsten 1:277, 1:392–393, 1:393
SIMT see stress-induced martensitic transformation (SIMT)
simulation and modeling 1:193–195
geometric simulation model 1:197
mathematical modeling 1:194–195, 1:194F
MD model 1:196–197
sinking EDM simulation method 1:197
spectroscopic measurement 1:197
supporting vector machine 1:197
thermal model 1:197–198
simultaneous method (SDF) 2:169
simultaneous micro-EDM and micro-ECM (SDECAM) 1:176
simultaneous two-photon absorption 3:115, 3:115F
single raster path 1:125F
single shielded TBMs 1:42
single-layer coatings 3:45, 3:101–102, 3:109
single-layer-coated wires 1:240–241, 1:241F
single-phase alpha-aluminum bronzes 2:409
single-point diamond turning (SPTD) 1:5
single-stage aging 2:389
sinking EDM simulation method 1:197
sintered reaction-bonded silicon nitride (SRBSN) 1:370, 1:373F
see also spark plasma sintering (SPS)
sinusoidal topography 3:303
Sisko model 1:491
skin fiber 1:209
SLA see stereolithography (SLA)
sliding wear resistance 2:442
SLM see selective light modulator (SLM)
slow dynamic contact angle 3:280–281
SLS see selective laser sintering (SLS)
sludging electrolytes 3:368
SMA see shape memory alloys (SMA)
small and medium manufacturing enterprises (SMEs) 1:468
small step-over size 1:127F
small-and medium-sized enterprises (SMEs) 2:423–424
smaller-the-better (SB) criterion 1:20
smart mechanical attrition (SMAT) 2:174–175, 2:174–176, 2:175
mechanism of surface nanocrystallization by 2:176
microstructure characterization of 2:176
process 2:175–176
properties of SMAT surface layer 2:176–178
Smart Tool boring process 1:36, 1:38F
SMAT see smart mechanical attrition (SMAT); surface mechanical attrition treatment (SMAT)
SMC see sheet molding compound (SMC)
SME see shape memory effect (SME); small and medium manufacturing enterprises (SMEs); small-and medium-sized enterprises (SMEs)
smoothness, of substrate surface 3:49
S/N ratio see signal-to-noise (S/N) ratio
soaking 2:4
soaking period 2:4
soaking time 3:349–350
Society of Automotive Engineers (SAE) 2:61–62
sodium bismuth titanate (NBT) 3:353
sodium borohydride 3:6
sodium chloride 3:368
sodium cyanide 2:77–78, 2:77F
sodium nitrate 3:368, 3:369
soft spots 2:104
prevention 2:104
soft-part machining (SPM) 1:47–48, 1:48F
sol infiltration 3:202
solar gas nitridering 2:132
solar panels 3:137
sol-gel process 3:200, 3:292–293, 3:293F
3:327–330, 3:329F
solid contact bearing 2:197
solid lubricants application 1:83–86
solid solution (SS) 2:373, 2:374–375
hardening 2:126–127
solid state heat treatment 3:196–197
austempering heat treatment 3:198
pressure-assisted sintering 3:197
pressure-less sintering and annealing 3:197–198
solid/pack carburization 2:73–74, 2:73 advantages 2:75–76
carburizing process 2:73–74
chemical reactions 2:74
decarburization 2:74–75
disadvantages 2:76
solid–liquid interface and PC-liquid acetone 3:142–143
atomic force microscope (AFM) 3:142–143
micrographs 3:142–143
surface topography 3:142–143
texture profile micrographs 3:143–144
Fourier transform infrared (FTIR) technique 3:147
hydrophobicity assessments 3:145–147
scanning electron micrographs 3:144
surface roughness 3:144–145
X-ray diffraction (XRD) technique 3:147
solid-phase phenomena 2:113–114
solid-state diffusion 3:42
solidus temperature 2:113
Solidworks Plastics software 1:472–473
solubility 2:375
solution annealing 2:416–417
solution heat treatment (SHT) 2:340T, 2:341T, 2:340F
solution treatment 2:272
circulation of furnace gas 2:384
cooling process 2:386
technology 2:387, 2:387F
criterion and standard 2:383–384
heating rate 2:384
temperature 2:384
heat preservation 2:385–386, 2:386F
quenching faults 2:387
solution treatment and aging (STA) 2:301
mechanical properties 2:307T
solutionizing 2:207, 2:374
process 2:383
and aging process 2:379F
and aging sub-classification 2:373–374
sub-classification 2:373–374
treatment system 2:390
solution-treated specimen 2:302, 2:303F
solvent debinding 1:480, 1:480F
sooting in gas 2:103
prevention 2:103
SP see stylus profilometer (SP)
spark plasma sintered HAp (SPS HAp) 3:350
microstructural and mechanical properties 3:350–351
optical properties 3:351–352, 3:352F
relative density 3:350F, 3:352F
application 3:349–351
of binary NiTi 3:340–342
in biomaterials 3:349–351
diffusion process 3:349F
frequency dependence on permittivity 3:354F
in lead-free ferroelectric ceramics 3:352–354
principles and mechanism 3:349
of ternary NiTi 3:342–345
spark–erosion-based processes electrical discharge machining (EDM) 1:527–529
for miniature gear manufacturing 1:527–529
wire electrical discharge machining (WEDM) 1:530–531
spatial light modulator (SLM) 3:114, 3:114F
SPD see severe plastic deformation (SPD)
SPDT see single-point diamond turning (SPTD)
specific processing energy 1:475
spackle infusion 3:273–274
spectroscopic measurement 1:197
spheroidal graphite iron see ductile irons
spheroidization 2:24, 2:188
annealing 2:23–24, 2:271
of silicon phases 2:363
spindle speed 1:138
vs. varied geometry 1:139F
spindle torque 1:138
SPM see scanning probe microscopy (SPM); soft-part machining (SPM)
spray air contact 3:151
spray parameters 3:207–208
spray process 3:207, 3:208F, 3:210
HVOF coating characteristics 3:209
mechanism of coating 3:208–209
principle 3:207
process technical details 3:207–208
spray parameters 3:207–208
spring steel 2:192–195, 2:192T, 2:194F
SPS see spark plasma sintering (SPS)
SPS HAp see spark plasma sintered HAp (SPS HAp)
spur gears 3:373–374
sputtering for FIB micromachining 1:331–332
sputtering process 3:29, 3:41, 3:233
SRBSN see sintered reaction-bonded silicon nitride (SRBSN)
SS see solid solution (SS)
SSS see supersaturated solid solution (SSS)
tangential-feed WEDG (TF-WEDG) 1:283, 1:285–286, 1:287
analysis 1:284–285
error analysis 1:284F
principle of 1:283–284
steps 1:284F
TB see twin boundary (TB)
TBCs see thermal barrier coatings (TBCs)
TBM see tunnel boring machine (TBM)
TCP see tricalcium phosphate (TCP)
TEM see transmission electron microscopy (TEM)
temper(s) 2:338–339
Al alloys heat treatment 2:382, 2:383F
for cast and forged aluminum alloy parts 2:383, 2:385F
for hot and cold rolled sheets/plates 2:382–383, 2:384F
for hot forged/extruded profiles 2:382, 2:384F
embrittlement 2:200
subdivisions 2:340
micro injection molding 1:446
range 2:387, 2:387F
temperature, time, transformation diagram (TTI) 2:387
tempering 2:3–2, 2:26–227, 2:306
alloy steels 2:228
austempering 2:44–45
ductile irons 2:264
effect of 2:92
formation of bainite in steels 2:42–43
mechanism of 2:42–43
grey iron 2:325–253, 3:253F, 3:254F
case study on 2:253
temperatures of 2:257–258, 2:259F, 2:260F
marothing 2:43–44
multiple 2:228–231
processes 1:47–48
resistance to 2:228
stages of 2:40–42, 2:226
time and temperature of 2:228F, 2:233–234
template method 3:141
TENAX 300 steel 2:241, 2:241–242, 2:242F
tensile forces 1:215
properties 1:425–427, 2:327, 2:331–332
TEOS see tetraethoxysilane (TEOS)
ternary alloys 3:11–12
ternary NiTi
fabrication of 3:342–345
spark plasma sintering of 3:342–345
tetra-amine di-chloride 3:6
tetradecanoic acid 3:285–286
tetraethoxysilane (TEOS) 3:141, 3:283–285
tetramethylsilane (TMS) 3:292, 3:292F
textural properties 3:90–92, 3:94–95
texture profile micrographs 3:143–144
3D Systems Inc. 3:111
threshold force, defined 1:98
thrusting 1:41–42
Ti-6Al-4V alloy 1:432
Ti6Al4V preparation see titanium alloy grade 5 (Ti6Al4V) preparation
TIN films 1:373–374
TIG see tungsten inert gas (TIG)
tilted droplet method 3:282F
tilted surface method 3:281, 3:282F
time–temperature–transformation (TTT) diagram 2:67–2:7, 2:13–14,
3:100–1:101, 2:101F
superimposed cooling curve on 2:17F
tin bronzes, heat treatment of 2:409
Ti–Ni alloys
MT in 2:322–324
precipitation in 2:324–326
aging treatment effect 2:328–333
cold rolling effect 2:326–328
TMT effects 2:325–326
three-transformation paths 2:326F
tissue engineering 3:121
titanium 1:281, 2:14, 2:289
alloying system 2:290
z alloys 2:290–291
α/β alloys 2:291–292
β alloys 2:292
casting route 2:289
heat treatment 2:292–293
high specific strength 2:289, 2:289F
powder metallurgy route 2:289
stabilizers 2:293F
stress–temperature map 2:301F
titanium alloy grade 5 (Ti6Al4V) preparation 1:252, 1:259F
titanium carbide 1:12–13, 1:173
titanium carbide percent 1:193
titanium carbonitride 1:12–13, 1:176–177
titanium dioxide 2:120, 2:37, 3:337
titanium nitride 1:12–13, 2:125
titanium–nitrogen system 2:112–113
TMS see tetramethylsilane (TMS)
TMs see thermo-mechanical treatments (TMs)
tonnage steels 2:215
tool based micromachining 1:323
ductile regime machining 1:325–326
microdrilling 1:324
micromilling 1:323
surface roughness 1:323
vibration 1:323–324
minimum quantity lubrication (MQL) 1:324–325
tooling 1:326–328
tool dynamic model 1:140
tool life 1:26–27, 1:29, 1:31, 1:43
tool steels 2:214–215, 2:430–434
carburization of 2:101–102
cold working tool steel 2:102
hot working tool steel 2:101–102
mold steel 2:102
shock resisting tool steel 2:102
definition 2:214–215
families 2:215–216
cold work steels 2:216
high speed steels (HSS) 2:216–218
hot work steels 2:216
plastic mold steels 2:216
families and classification 2:215
heat treatment of 2:214–245, 2:218
quality 2:234–236
historical development of 2:215, 2:216F
names and classifications 2:215
phase transformation 2:218–222
tool system modeling 1:142F
tool vibration 1:26–27, 1:172–173
tool wear 1:9–11
patterns and mechanisms 1:63–66
progression modeling 1:76–78, 1:78F
tool wear rate (TWR) 1:279
tool–chip interface temperature 1:61–63
toolhead dynamic modeling 1:144–147
topography 1:66, 2:18, 3:34–35
topological evaluation methods 3:243
touch surface measurement techniques 3:243
atomic force microscopy 3:244, 3:247F
portable handheld surface finish instrument 3:243, 3:244F
stylus profilometer (SP) 3:243–244, 3:244F
noncontact surface measurement techniques 3:244–245
coherence scanning interferometry (CSI) 3:246, 3:246F
confocal microscopy 3:244–245
electron microscopy 3:247–248
focus variation microscopy 3:245–246
scanning probe microscopy (SPM) 3:246–247
parameters, characterization of 3:248–250
primary profile 3:250
roughness profile 3:250–254
waviness profile 3:250
surface finishing 3:254–257
top-surface metallurgy (TSM) 3:220
torch heating 3:195
torque rheometer 1:477
tough pitch copper 2:399
TPA see two-photon absorption (TPA)
TPP see two-photon polymerization (TPP)
TPU see thermoplastic polyurethane (TPU)
trade sale coatings 3:150
transferring time 2:378
transformation induced plasticity (TRIP) 2:208, 2:209F, 3:184
transformation kinetics 2:7
transformation temperature, defined 3:336
transformer oil 1:278
transistor-type pulse generator 1:274, 1:274F
triadic Koch curve, construction of 3:291F
tribological performance 2:427–429
tribometers 3:52
tribosters 3:52
tricalcium phosphate (TCP) 3:350
TRIP see transformation induced plasticity (TRIP)
trivalent chromium 3:322–323
troostita 2:226–227
TSM see top-surface metallurgy (TSM)
TTA diagrams 2:156
tumbling process 3:194
tungsten [W] 1:277, 1:392–393, 1:393, 2:14
wite 1:248
tungsten carbide [WC] 1:277, 1:300–301, 1:392–393, 1:393
tungsten carbide coatings 3:48
tungsten carbide–cobalt (WC–Co) 1:277, 1:300–301
micro-EDM 1:304–305, 1:305–306
tungsten high-speed tool steels 2:217–218T
tungsten hot work tool steels 2:217–218T
tungsten inert gas (TIG) 3:196, 3:196
tuning of thickness 3:28
tunnel boring process in building 1:39–41
support 1:42
tunnel boring machine (TBM) 1:39
turning 1:1, 3:193
twin boundary (TB) 1:427
twin screw extruder 1:468
twin–matrix (T–M) ranges 1:426–427
winning-induced plasticity (TWIP) 3:185, 3:186–187
twins 1:408, 1:426–427
wire EDM system 1:285–286
TWIP see winning-induced plasticity (TWIP)
two contact bodies 1:121F
two laser coating 3:102–103, 3:109
2D cutting geometry 1:76
2D Fast Fourier Transform (FFT) 3:271–273
two-dimensional fiber-reinforced polymer 1:219
2D periodic profiles 3:298
periodic profile 3:298
saw-toothed periodic profile 3:298
2D surface profile parameters 3:252–254T
two-photon absorption (TPA) 3:114
sequential 3:115, 3:115F
simultaneous 3:115, 3:115F
two-photon polymerization (TPP) 3:115
two-plated mold, typical feature of 1:47F
two-step austempering heat treatment 2:268–269
two-way shape memory effect (TWSME) 2:321–322
TWR see tool wear rate (TWR)
TWSME see two-way shape memory effect (TWSME)
typical heat treatment cycle 1:484F
typical thermogravimetric analysis 1:484F

U

UACEDM see ultrasonic assisted cryogenically cooled copper electrode (UACEDM)

UBM see under bump metallurgy (UBM)

UHSS see ultrahigh strength steels (UHSS)

ultimate tensile strength (UTS) 1:425, 1:426, 2:350

ultrafine grained dual phase steel 2:209–210

ultrahard high-speed tool steels 2:217–218T

ultrahigh strength steels (UHSS) 1:47, 2:190, 2:190T

ultra-high temperature materials 3:349

ultraprecision turning 1:9

ultrasonic assisted cryogenically cooled copper electrode (UACEDM) 1:173

ultrasonic atomization 3:153

ultrasonic atomizers 3:153F, 3:155

ultrasonic vibration assisted EDM 1:172–173
dielectric vibration 1:174
tool vibration 1:172–173

workpiece vibration 1:173–174

ultrasonic vibration pulse electro-discharge machining (UVPEDM) 1:172

ultrasonic-assisted EDM, powder mixed 1:188–190, 1:188F, 1:189F, 1:190F, 1:191F

ultrasonics 1:157, 1:159, 1:161–162

unconventional loose-abrasive grinding 1:157–158

under aging (UA) copper–beryllium alloys 2:412

under bump metallurgy (UBM) 3:220

unipolar pulse 3:361–362

unsaturated liquid solution 2:375

unsaturated polyester (UP) 1:215–216

uphill quenching method 2:366–368

US Air Force (USAF) 1:419

UTS see ultimate tensile strength (UTS)

UV laser beam 3:111–112

UVPEDM see ultrasonic vibration pulse electro-discharge machining (UVPEDM)

v

VACNTs see vertically aligned carbon nanotubes (VACNTs)

vacuum bag moulding 1:220

coating techniques 3:29

environment 3:233

vacuum arc remelting (VAR) 3:338

vacuum carburizing 2:73, 2:80

advantages 2:80

carburizing process 2:80

control of carbon supply and case depth 2:80

disadvantages 2:80

vacuum induction melting (VIM) 3:338

vanadium 2:14, 3:184–185

vanadium-microalloyed steel, carburization of 2:97–98

vapor blanket stage 2:53

vapor depositions 3:41

chemical vapor deposition (CVD) 3:41

physical vapor deposition (PVD) 3:41

plasma enhanced CVD technique 3:41

vapor-transport cooling stage 2:53

VAR see vacuum arc remelting (VAR)

variation in microhardness (VHN) 2:330F

vegetable oils application 1:83–86

velocimetry interferometer system for any reflector (VISAR) 1:413

vermiculite graphite iron 2:248

vertical pick-up turning machines 1:54

vertically aligned carbon nanotubes (VACNTs) 1:403

VF800AT tool steel 2:236, 2:236–237

analysis of several conditions of heat treatment in 2:237–238

microstructures of 2:238F

nominal chemical composition of 2:236F

resistance to bending and rupture energy 2:237F

VH13ISO tool steel 2:236

analysis of several conditions of heat treatment in 2:238–239

microstructures of 2:239F

nominal chemical composition of 2:236F

VHN see variation in microhardness (VHN)

vibration 1:4–6, 1:323–324

vibration-assisted polishing 1:163

VIM see vacuum induction melting (VIM)

vinyl alcohol 1:213

VISAR see velocimetry interferometer system for any reflector (VISAR)

viscosity for micro injection moulding 1:446

viscosity in micro moulding 1:447

viscosity models 1:445–446, 1:495

visual sieving 3:273F

voltage 3:367, 3:369

voltage vs. displacement relationship 1:150F

volume flow rate 1:449

von Mises stress distribution 3:108

von Mises stress variation 1:359, 1:359–361

von Mises yielding criterion 1:414

Vycor glass 3:15

w

WAIM see water-assisted injection moulding (WAIM)

warm forging punch 2:242–243

warm peening 2:173–174

relation between temperature and fatigue life 2:174

residual stress in warm peening 2:174

warm peening procedure 2:174

water 1:278

quenching media 2:53–54, 2:57F, 2:58F

water–air spray cooling 2:391, 2:391F

water-based dielectrics 1:278

water-assisted injection moulding (WAIM) 1:467

water-hardening tool steels 2:217–218T

water-in-oil (W/O) emulsion 1:175

waterjet machining 1:221–222

water-soluble binder 1:476
water-to-oil ratio 1:2
waviness 3.248–249, 3.250
wax-based binder system 1.476, 1.477
WC see tungsten carbide (WC)
weak hardeners 2.207
wear 3.230, 3.230–231, 3.231
resistance 2.131, 2.270
weather resistance 3.155
weaving process 1.218
WEDG see wire electrical discharge grinding (WEDG)
WEDM see wire electrical discharge machining (WEDM)
weldable malleable irons 2.256
welded joints 1.429–431
Wenzel and Cassie–Baxter states 3.139–140
Wenzel equation 3.296–297
Wenzel’s formula 3.139
wet chemical post-processing 1.166–167
wet coating 3.28–29
wet etchant 1.329
wet lay-up see hand lay-up
wettability 3.26–27, 3.27
wet wire electrical discharge machining (WEDM)
whiteheart malleable iron
Widmanstatten ferrite
wetting hysteresis, for superhydrophobic surface 3.279F
wheel grinding 1.158–159
wheel truing 1.379–380
white iron(s) 2.248
abrasion resistant high-alloy 2.276–279
white layer see compound layer
white layer thickness (WLT) 1.183–184, 1.232, 1.250–251, 1.251F, 1.254T, 1.256F, 1.256T, 1.257F
electrical parameters effect 1.259
wire electrode parameters effect 1.260–262
workpiece parameters effect 1.262
whiteheart malleable iron 2.256–257, 2.257F
widmanstatten ferrite 2.48, 2.48F
Wilhelmy method 3.279–280
Wilhelmy test 3.280
wiper inserts 1.8
wire electrical discharge grinding (WEDG) 1.270, 1.273–274, 1.283
compliant microelectrode arrays fabrication 1.286–288
fabrication of microelectrode for batch production 1.286
radial-feed WEDG 1.283
series-pattern micro-disk electrode fabrication 1.288–290
TF-WEDG 1.283–284
twin-wire EDM system 1.285–286
wire electrical discharge machining (WEDM) 1.232, 1.232F, 1.234–236, 1.278, 1.303–304
see also electrical discharge machining (EDM)
advantages 1.531–532
ANFIS modeling 1.253–258
applications 1.533
discharge sparks 1.235F
EDM wire electrode 1.236–238, 1.239F
experimental details 1.251, 1.253
fishbone diagram 1.233F
limitations 1.532–533
miniature spur gears 1.533F
µ-WEDM 1.530–531
pulse generator analysis 1.234–236
SEM images of micro spur gear 1.533F
surface characterization 1.252–253
white layer and heat-affected zone 1.250–251
wire electrode 1.248, 1.253F
wire frame design 1.130F
wire rupture 1.236
wire-cut EDM 1.384–385
wire-cut machine 1.232
WLT see white layer thickness (WLT)
W/O emulsion see water-in-oil (W/O)
emulsion
workpiece 1.28F, 1.38F, 1.75
clamping 1.52–53
material 1.3
effect 1.17–19
surfaces 1.72
vibration 1.173–174, 1.174F
workpiece gear, in gear shaving 1.105–106
woven fibers 1.213
wrapping of columns 1.215
wrought alloys 2.340–341, 2.341T, 2.342T, 2.344–345T
heat treatment for 2.357–358, 2.359–362F, 2.362T
wrought aluminum alloys 2.368
WT see 2D Wavelet Transform (WT)
x-ray line profile analysis (XLPA) 1.417
x-ray lithography process 1.521
x-ray photoelectron spectroscopy (XPS) 3.8, 3.87, 3.89–90, 3.90T, 3.212–213
X-ray tomographic microscopy (XTM) 3.262
XRD see X-ray diffraction (XRD)
XTM see X-ray tomographic microscopy (XTM)

Y
Y2O3-stabilized ZrO2 (YSZ) 3.215, 3.215F
coatings 3.196
Y3Al5O12 see Yttrium aluminum garnet (YAG)
YAG see Yttrium aluminum garnet (YAG)
yield stress (YS) 2.389
Young equation 3.295
for flat surfaces 3.138–139
YS see yield stress (YS)
yttria-stabilized zirconia 2.139–140, 2.143–146, 2.151
see also phosphorous bronze; Rene 41
contact angles measurement 2.148T
cross-section of laser-treated zirconia layer 2.146F
laser-treated zirconia surface 2.145F
water droplet shapes 2.147F
x-ray diffraffogram of laser-treated and as-received 2.147F
yttrium aluminum garnet (YAG) 3.111–112, 3.349

Z
Zener–Wert–Avrami function 1.434
zeolite coating 3.48
zero-backlash method 1.104
zigzag path fitting 1.145F
planning 1.145F
zinc 3.178, 3.179–180
alloys 1.277
bath 3.181, 3.188
coating 3.32, 3.178, 3.181
electrochemical characteristics 3.32–35, 3.33F, 3.35F
metal composites for alloy coating 3.30–31
zinc oxide nanoparticles 3.285
zinc phosphate 3.150
zirconium 1.206
zirconium nitride 3.46
zirconium nitride PVD coating 3.46
zirconium–copper alloys 2.414–415