Examiner reliability in fluorosis scoring: a comparison of photographic and clinical methods

N.A. Mohd Nor¹, ², I.G. Chestnutt¹ and B.L. Chadwick¹

¹Department of Applied Clinical Research and Dental Public Health, Cardiff University, UK; ²Department of Community Oral Health and Clinical Prevention, Faculty of Dentistry, University of Malaya, Malaysia

Introduction

Dental fluorosis is defined as hypomineralization of tooth enamel resulting from exposure to excess levels of fluoride during tooth formation (Dean, 1934). Clinically, dental fluorosis presents as white striations or diffuse parchment-like areas on the enamel. In more severe cases, fluorosed enamel appears pitted and yellowish-brown in colour (Brown et al., 2005; Buzalaf and Levy, 2011; Mascarenhas, 2000).

Several epidemiological indices have been developed to describe the clinical appearance of dental fluorosis. No one index has emerged as the agreed standard method, the index of choice to a degree depending on the objective of the study. Dean’s Index (Dean, 1934) was the first index reported in the literature. In the intervening years, other indices were developed, the aim being to improve Dean’s Index criteria: Thylstrup and Fejerskov Index (TFI; Fejerskov et al., 1977), Tooth Surface Index of Fluorosis (TSIF; Horowitz et al., 1984) and the Fluorosis Risk Index (Pendry, 1990). These indices were classified as aetiological indices that specifically measure fluoride induced enamel changes. In contrast, descriptive indices such as the Developmental Defects of Enamel (DDE) index, record enamel defects, based on descriptive criteria, without assuming the aetiology of the defects (FDI, 1982).

Regardless of which index is used in the clinical assessment of fluorosis, the diagnosis can be affected by many factors such as variation in the method of examination, tooth condition (wet or dry), lighting conditions, examiner bias and intra and inter-examiner reliability (Whelton et al., 2004). A potential way of overcoming these shortcomings is to use a standardized photographic method for capturing a permanent record of the appearance of the enamel.

There are however, advantages and disadvantages in photographic assessment compared with direct clinical recording of dental fluorosis. The major benefits of photographs are that they capture a permanent record and allow blind scoring. Photography also enables scoring by multiple examiners in multi-site studies and allows repeated assessments of the same images (Cochran et al., 2004a; Ellwood et al., 1994; Fejerskov et al., 1977; Soto-Rojas et al., 2008).

The disadvantages of using photographs are firstly variation in photographic technique between studies such as differences in equipment, lens, lighting system and the quality of the image produced. Secondly, difficulties in capturing teeth images due to lack of accessibility especially for posterior teeth mean that photographs have only been used to record the anterior teeth, mainly incisors and canines. This could result in under reporting of the prevalence of dental fluorosis. In contrast, the greater detail provided by photographs may well result in over reporting prevalence (Cochran et al., 2004a; Soto-Rojas et al., 2008).

Key words: Dean’s index, dental fluorosis, Malaysia, reliability, photographic, clinical

Objective: To assess examiner reliability when scoring dental fluorosis in Malaysian children using clinical (Dean’s Index) and photographic methods. Method: The upper central incisors of 111 children were examined both clinically and photographically for fluorosis status using Dean’s index. Twenty children were re-examined after a two-week interval for intra-examiner reliability by a single examiner. In addition, two independent examiners and the clinical examiner scored 111 photographic images of the same children in a standardized manner. Fluorosis scores were compared individually between examiners for both clinical and photographic scoring. Examiner reliability was assessed using both simple and weighted kappa statistics at tooth level. Sensitivity, specificity, positive-negative predictive values and a Receiver Operating Characteristic (ROC) curve were also calculated to determine the accuracy of the test. Results: Across the three examiners, the prevalence of fluorosis (Dean’s score ≥2) using photographs was lower (ranged from 23% to 26%) than the prevalence recorded by clinical examination (30%). The kappa score for intra-examiner reliability for the duplicate clinical examination was excellent (0.89). Inter-examiner reliability between the photographic method and the clinical examination (gold standard) for each examiner was substantial with weighted kappa values ranging from 0.74 to 0.77. The photographic method indicated higher specificity (99%) than sensitivity (79%) and the area under the ROC curve was also high (0.89) which suggests good accuracy of the diagnostic test. Conclusion: These results suggest that photographic examination of fluorosis on central incisors can be recorded with good examiner reliability. The recorded fluorosis prevalence was lower using the photographic scores.

Correspondence to: Nor Azlida Mohd Nor, Department of Applied Clinical Research and Dental Public Health, Cardiff University Dental School College of Biomedical and Life Sciences, Heath Park, Cardiff CF14 4XY, UK. Email: mohdnor@cardiff.ac.uk
There are a number of studies that have assessed the prevalence of fluorosis using photographs alone (Cochran et al., 2004b; Ellwood et al., 1994; Tavener et al., 2007) and clinical examinations compared with photographs (Stephen et al., 2002). Several studies have compared photographic methods with clinical examination using the (DDE) Index (Nunn et al., 1993; Wong et al., 2005), the Fluorosis Risk Index (Cruz-Orcutt et al., 2012; Soto-Rojas et al., 2008) and the TF index (Ellwood et al., 1996). Some studies compared several indices against each other using both clinical and photographic methods (Pretty et al., 2012; Sabieha and Rock, 1998). However, information is scarce on how Dean’s Index compares with photographic methods. Therefore, the present study aims to compare examiner reliability and the relative prevalence and severity scores resulting from clinical and photographic assessment of fluorosis using Dean’s index in Malaysian children.

Method

Data from this study were obtained from a larger ongoing Malaysian fluoridation study. The 111 children studied in this exercise were aged 9 and 12 years old and were lifetime residents in a fluoridated community (0.5-0.7mg/L) located in Shah Alam, Selangor. To be included in the study, the children were required to have no medical contraindications to undergoing a clinical dental examination and have had informed written consent provided by their parent or guardian.

Fluorosis was scored by three examiners. Examiner 1 undertook both clinical and photographic assessment, whilst examiners 2 and 3 participated only in the photographic assessment. Examiner 1 received extensive training in the use of Dean’s Index as part of the Malaysian National Oral Health Survey. The training for fluorosis assessment involved an online training module (Whelton et al., 2014), theoretical explanation and clinical assessment on clinical subjects. The same online training module was used by the two photographic only examiners (2 and 3). This online training generated kappa scores for intra-examiners reliability and was repeated until each examiner reached very good to excellent kappa values. Prior to conduct of the study, Examiner 1 repeated the online training module and received intra-oral photographic technique training from the Audio-Visual Department, School of Dentistry, Cardiff University.

Clinical examinations were conducted by a trained and calibrated examiner (examiner 1). Clinical recording of fluorosis was conducted under natural light with the subject sitting on a chair in the upright position using a disposable mirror, CPITN probe and gauze for plaque removal (if necessary). Maxillary central incisors were evaluated using Dean’s Index in a wet condition (0, normal; 1, questionable; 2, very mild; 3, mild; 4, moderate; 5, severe). If fluorosis was present, diagnosis was based on the condition of the maxillary central incisors. If the two central incisors were not equally affected, the condition of the least affected tooth was recorded. Twenty children were re-examined after a two-week interval to assess intra-examiner agreement.

Immediately after the clinical examination, digital images of the maxillary incisors were taken with a digital SLR camera, Nikon 90D body, sigma 105mm f/2.8 macro lens and sigma macro ring flash E140. The photographic technique used in this study followed the method described by Cochran and colleagues (2004a). A cheek retractor was inserted into the child’s mouth and they were instructed to keep their head still and place their teeth edge to edge. If it was not possible to maintain edge to edge incisal contact, the child was instructed to bring their upper and lower central incisors into the same vertical plane as far as possible. The photographs were taken while the teeth were still wet. Children were asked to moisten their teeth before the photograph was taken. If this was not possible damp cotton wool was used to keep the teeth moist. Most of the photographs only involved one exposure per child. However on occasion, where the examiner was not satisfied with the first photograph (such as issues with specular reflection), further exposures were attempted.

None of the images contained any identifying aspects of the subject’s face. A photographic log form enabled the digital images to be linked to a subject identifying code. The digital images were downloaded to a computer for storage and viewing. In those cases where more than one exposure had been taken, the best quality image was selected.

Photographic image scoring took place in Cardiff University, 45 days after clinical examinations in Malaysia. Each photograph was assigned a unique identifying number. The photographs were then mixed randomly for blind fluorosis scoring. All 111 images were included in the assessment and projected onto a white screen using Microsoft PowerPoint in a darkened room. The size of the image projected on screen was approximately 69cm by 38cm. In terms of magnification of the image approximately five times linear magnification from standard photo print size 12.5cm by 7.5cm. All three examiners were seated approximately three metres from the screen and scored the photographs at the same time under identical lighting conditions. Following individual assessment, all examiners re-examined all photographs and discussed scores thoroughly to achieve consensus agreement on the final photographic score. The consensus photographic score was based on the agreement of at least two of the examiners. In the blind scoring protocol, a specific code of “unable to score image” was also included alongside with Dean’s Index code. Any issues with the images such as presence of light reflection or excess camera-flash were noted during the evaluation of each photograph.

This study was reviewed and approved by Cardiff University Dental School Research Ethics Committee (DSREC 14/17a). In addition, permission to conduct the study was obtained from the relevant Ministries in Malaysia namely the Ministry of Health, the Ministry of Education and the State Education Department.

Data were entered analysed using SPSS and STATA software. The tooth-level Dean’s score was compared between the same examiner (clinical versus duplicate clinical score; clinical versus photographic score) and different examiners (individual photographic score versus clinical score, Table 1); individual photographic score versus other examiner, Table 2) and individual photographic score versus consensus photographic score, Table 2). The clinical score was used as the gold standard.
A positive diagnosis of fluorosis was based on very mild or greater (Dean’s score ≥2) or as no fluorosis (Dean’s score 0 or 1). For statistical analysis the data were dichotomised into fluorosis or no fluorosis to simplify analysis. A weighted kappa value was generated for inter-examiner reliability using the full range of Dean’s Index. The weighted matrix used for computing weighted kappa statistics is shown in Table 3. A weight of 1 was given for exact agreement, a weight of 0.5 was given when examiner disagreed by only one severity level and a weight of 0 was given when examiners disagreed by more than one severity level. Descriptive analysis was used to describe the prevalence of fluorosis. McNemar’s Test was used to determine if there were statistically significant differences between the prevalence of fluorosis using clinical and photographic methods (Altman, 1990). Percentage agreement and kappa statistics were used to assess examiner reliability at tooth level. Kappa interpretation was based on the definition by Landis and Koch (1977). Kappa values 0.81 to 1.0 indicate excellent agreement, 0.61 to 0.80 indicate substantial agreement, 0.41 to 0.60 indicate moderate agreement, 0.21 to 0.40 indicate fair and less than 0.20 indicate poor agreement. In addition, sensitivity, specificity, positive-negative predictive values and a Receiver Operating Characteristic (ROC) curve between clinical and consensus photo score were also calculated to determine the accuracy of the diagnostic test.

Results

A total of 111 participants were examined clinically and 111 images of these same participants were examined photographically for fluorosis on central maxillary incisors. It was possible to score all 111 images and none were excluded because of poor image quality.

Following re-assessment of 20 children, intra-examiner clinical examination reliability by a single examiner (examiner 1) indicated substantial agreement (89.6%) with a weighted kappa value of 0.89. Intra-examiner agreement between all 111 photographs and corresponding clinical examinations by a single examiner (examiner 1) also indicated substantial agreement with a weighted kappa value of 0.87. Although there was good intra-examiner reliability, Examiner 1 identified a significantly higher prevalence of fluorosis in clinical scores (30%) than photographic scores (23%) (p<0.02).

Table 4 shows the fluorosis prevalence and frequency distribution of Dean’s scores for individual examinations of clinical and photographic methods. Most fluorosis cases fell into very mild and mild categories. The prevalence of fluorosis (Dean’s score ≥2) using clinical examination was higher than the consensus photographic score (30% vs. 24%, p=0.07).

Table 1 shows inter-examiner reliability between clinical and photographic methods. Inter-examiner reliability between photographic examiners (2 and 3) versus clinical examiner (examiner 1) was found to have substantial agreement using both weighted and simple kappa statistics.

Table 2 shows all examiners demonstrated substantial to excellent inter-examiner reliability for photographic scoring with weighted kappa values ranging from 0.72 to 0.91. There was little difference found between weighted and simple kappa analysis.

Further analysis was carried out using the consensus photographic score versus the clinical examination (gold standard) score. Sensitivity, specificity, positive-negative predictive values and the Receiver Operating Characteristic (ROC) curve were calculated. Table 5 shows that the diagnosis of fluorosis using the photographic method had a higher specificity (99%) than sensitivity (79%); positive predictive value 96%; negative predictive value 92% likelihood ratios (+LR=39;-LR=0.22).

Table 1. Inter-examiner agreement of dental fluorosis by clinical examination

<table>
<thead>
<tr>
<th>Clinician Examiners</th>
<th>Unweighted data</th>
<th>Weighted data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa</td>
<td>Agreement (%)</td>
</tr>
<tr>
<td>Examiner 1 clinical versus Examiner 2 photographs</td>
<td>0.82</td>
<td>93%</td>
</tr>
<tr>
<td>Examiner 1 clinical versus Examiner 3 photographs</td>
<td>0.72</td>
<td>89%</td>
</tr>
</tbody>
</table>

Table 2. Inter-examiner agreement of dental fluorosis between individual photographic score and consensus photographic score

<table>
<thead>
<tr>
<th>Clinicians</th>
<th>Unweighted data</th>
<th>Weighted data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa</td>
<td>Agreement (%)</td>
</tr>
<tr>
<td>Examiner 1 versus Examiner 2</td>
<td>0.78</td>
<td>92</td>
</tr>
<tr>
<td>Examiner 1 versus Examiner 3</td>
<td>0.72</td>
<td>90</td>
</tr>
<tr>
<td>Examiner 2 versus Examiner 3</td>
<td>0.85</td>
<td>95</td>
</tr>
<tr>
<td>Examiner 1 versus Consensus</td>
<td>0.83</td>
<td>94</td>
</tr>
<tr>
<td>Examiner 2 versus Consensus</td>
<td>0.91</td>
<td>96</td>
</tr>
<tr>
<td>Examiner 3 versus Consensus</td>
<td>0.90</td>
<td>96</td>
</tr>
</tbody>
</table>

Note: Consensus photographic score based on the agreement of at least two of the three examiners. Examiner 1 was both a clinical and a photographic examiner, Examiners 2 and 3 were photographic examiners only.

Table 3. Weighting matrix used for computing the weighted kappa statistic

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Questionable</th>
<th>Very mild</th>
<th>Mild</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1</td>
<td>½</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Questionable</td>
<td>½</td>
<td>1</td>
<td>½</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Very mild</td>
<td>0</td>
<td>½</td>
<td>1</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>Mild</td>
<td>0</td>
<td>0</td>
<td>½</td>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td>Moderate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>½</td>
<td>1</td>
</tr>
</tbody>
</table>

A positive diagnosis of fluorosis was based on very mild or greater (Dean’s score ≥2) or as no fluorosis (Dean’s score 0 or 1). For statistical analysis the data were dichotomised into fluorosis or no fluorosis to simplify analysis. A weighted kappa value was generated for inter-examiner reliability using the full range of Dean’s Index. The weighted matrix used for computing weighted kappa statistics is shown in Table 3. A weight of 1 was given for exact agreement, a weight of 0.5 was given when examiner disagreed by only one severity level and a weight of 0 was given when examiners disagreed by more than one severity level. Descriptive analysis was used to describe the prevalence of fluorosis. McNemar’s Test was used to determine if there were statistically significant differences between the prevalence of fluorosis using clinical and photographic methods (Altman, 1990). Percentage agreement and kappa statistics were used to assess examiner reliability at tooth level. Kappa interpretation was based on the definition by Landis and Koch (1977). Kappa values 0.81 to 1.0 indicate excellent agreement, 0.61 to 0.80 indicate substantial agreement, 0.41 to 0.60 indicate moderate agreement, 0.21 to 0.40 indicate fair and less than 0.20 indicate poor agreement. In addition, sensitivity, specificity, positive-negative predictive values and a Receiver Operating Characteristic (ROC) curve between clinical and consensus photo score were also calculated to determine the accuracy of the diagnostic test.

Results

A total of 111 participants were examined clinically and 111 images of these same participants were examined photographically for fluorosis on central maxillary incisors. It was possible to score all 111 images and none were excluded because of poor image quality.

Following re-assessment of 20 children, intra-examiner clinical examination reliability by a single examiner (examiner 1) indicated substantial agreement (89.6%) with a weighted kappa value of 0.89. Intra-examiner agreement between all 111 photographs and corresponding clinical examinations by a single examiner (examiner 1) also indicated substantial agreement with a weighted kappa value of 0.87. Although there was good intra-examiner reliability, Examiner 1 identified a significantly higher prevalence of fluorosis in clinical scores (30%) than photographic scores (23%) (p<0.02).

Table 4 shows the fluorosis prevalence and frequency distribution of Dean’s scores for individual examinations of clinical and photographic methods. Most fluorosis cases fell into very mild and mild categories. The prevalence of fluorosis (Dean’s score ≥2) using clinical examination was higher than the consensus photographic score (30% vs. 24%, p=0.07).

Table 1 shows inter-examiner reliability between clinical and photographic methods. Inter-examiner reliability between photographic examiners (2 and 3) versus clinical examiner (examiner 1) was found to have substantial agreement using both weighted and simple kappa statistics.

Table 2 shows all examiners demonstrated substantial to excellent inter-examiner reliability for photographic scoring with weighted kappa values ranging from 0.72 to 0.91. There was little difference found between weighted and simple kappa analysis.

Further analysis was carried out using the consensus photographic score versus the clinical examination (gold standard) score. Sensitivity, specificity, positive-negative predictive values and the Receiver Operating Characteristic (ROC) curve were calculated. Table 5 shows that the diagnosis of fluorosis using the photographic method had a higher specificity (99%) than sensitivity (79%); positive predictive value 96%; negative predictive value 92% likelihood ratios (+LR=39;-LR=0.22).
Clinical 72 (65) 6 (5) 21 (19) 10 (9) 2 (2) 0 33 (30)

prevalence (Dean’s Index) with all photographic methods
tive light fl uorescence) using two indices (Dean’s and
technique versus polarized white light versus quantita-
Dean’s Index (Pretty et al., 2012). That study compared
between clinical against photographic methods using

The area under the curve (AUC) was high (0.89) when
consensus photographic score was compared to clinical
score. The AUC results closer to maximum value of 1
suggest good accuracy of the diagnostic test in the
differentiation between fluorosis and non-fluorosis.

Discussion
The present study’s analysis focused on examiner reliability
on fluorosis assessment and is part of larger on-going
research into Malaysian fluoridation. The key findings of
this study were fluorosis prevalence was higher using
clinical examinations than the photographic method and
both intra- and inter-examiner reliability was good for
photographic assessment.

It is difficult to compare the data from the current
study, with other published studies because of the differences
in the clinical examination method, photographic technique and indices used in previous studies. In the
following comparisons these limitations should be borne
in mind.

Findings from this study can be compared with the one
previous study assessing agreement of fluorosis diagnosis
between clinical against photographic methods using
Dean’s Index (Pretty et al., 2012). That study compared
a specific photographic techniques (traditional digital
technique versus polarized white light versus quantita-
tive light fluorescence) using two indices (Dean’s and
TF Indices). These authors reported a higher fluorosis
prevalence (Dean’s Index) with all photographic methods
than with clinically recorded scores. The difference in
findings may have been due their drying of teeth prior
to taking the photograph, whereas in the present study
the teeth were photographed wet. By drying the teeth,
the contrast between normal and abnormal enamel may
be enhanced which allows a more detailed examination.
In contrast, measuring fluorosis with the teeth wet may
obscure some of the subtleties of fluorosis (Cochran et al.,
2004a; Ellwood et al., 1994; Thystrup and Fejerskov,
1978), but it could be argued more nearly reflects
conditions of everyday life. In addition, Pretty and co-
workers used two different indices in their study and
whether the teeth were dried or not during the clinical
examination was not clearly discussed. The differences
in clinical examination method used for each index may
also account for some of the differences.

When comparing the results of the present study with
other studies of different indices for measuring fluorosis,
the present findings were similar to some (Martins et al.,
2009; Soto-Rojas et al., 2008). Soto Rojas and colleagues
reported a higher prevalence of fluorosis by clinical
examination (22%) than by the photographic method
(18%) using TSFI criteria. The later study by Martins
et al. (2009) reported that the prevalence of fluorosis
was higher when assessed by clinical examination (49%)
compared to a photographic method (37%) among 49
Brazilian children, however the fluorosis criteria used
was not made clear. However, other studies reported
higher fluorosis prevalence using a photographic method
(Cruz-Orcutt et al. 2012; Wong et al., 2012). Cruz-Orcutt
et al. (2012) dried teeth with the effect described earlier.
While, the difference observed by Wong et al. (2012)
may be explained by the difference in photographic method.
Although the authors examined and photographed teeth
in a wet condition, they used conventional photographs
and not the digital photographs of the present study.

Overall, all the study examiners demonstrated good
intra-examiner and inter-examiner reliability between
clinical and photographic scoring. There was not much
different found between simple kappa or weighted kappa
analysis. The substantial to excellent agreement between
diagnosis of fluorosis using the photographic method and
clinical assessment is in accordance with other studies
(Ellwood et al., 1996; Martins et al., 2009; Sabieha and
Rock, 1998; Soto-Rojas et al., 2008; Wong et al., 2005).
This could be attributed to the standardized photographic technique employed. For example the use of a ring flash reduced shadows in the photographs. In addition, images were viewed at a standard distance from the screen and scored at the same time by all examiners under similar conditions, which aimed to reduce magnification effects and examiner bias during assessment. The viewing conditions during photographic assessment are considered one of the key factors that affect examiner agreement (Tavener et al., 2007). That study reported low examiner reliability (kappa value less than 0.60) among ten examiners in fluorosis assessment of 120 images when assessed remotely using different computer monitors. The resultant different lighting, contrast and brightness affected the viewing conditions. In addition, the use of photographs avoids the inherent limitations with a clinical examination such as uncooperative patient and non-uniform lighting.

Although there was good intra-examiner reliability, examiner 1 demonstrated significantly higher prevalence in clinical score than photographic score. The major difference lay in differentiating between the questionable and very mild categories of fluorosis. The possible explanation may be due to the limitations of Dean’s Index that the diagnostic category for the mildest form of fluorosis is unclear, imprecise and lacks sensitivity (Clarkson, 1989; Horowitz 1986). Despite these limitations, Dean’s Index has been used extensively because of the simplicity of the index. It also allows historical comparison with previous studies. Other specific fluorosis indices such as TFI and TSIF were found to be more sensitive to detecting the mildest form of fluorosis than Dean’s Index (Rozier, 1994). In addition, another possible factor is that drying may have occurred during clinical examination. It is challenging to keep the teeth moist throughout the clinical examination. In the present study, the teeth were re-wetted prior to photography, which may explain the reason for the lower fluorescence score using photographs.

The findings from the present study support results from other studies that the photographic method is a valid and reliable method for assessing fluorosis. Although the study was able to suggest good reliability for photographic assessment, it had some limitations. Firstly, there was potential bias of foreknowledge of the clinical situation by Examiner 1 in photographic scoring. Effort was made to overcome this type of bias, by assessing the photographs 45 days after the clinical examination and the photographs were mixed randomly for blind scoring. Secondly, the distribution of fluorescence distribution within the studied population was based on index teeth scores among selected samples and should not be confused with population prevalence. Lastly, caution should also be taken when interpreting the reliability results, as the variation of prevalence and severity of fluorosis would affect the agreement. For example, the agreement levels will be greater if the sample examined has more people free of fluorosis and the agreement level will be lower when more categories were used in fluorosis classification. The overall distribution of fluorescence score is reported in Table 4. In this study all children examined irrespective of fluorosis status were included in determining the reliability scores.

Conclusion

The results suggest that photographic examination of fluorosis on central incisors can be recorded with good examiner reliability. The reported fluorosis prevalence was lower when using the photographic scoring method.

References

