Controlling quantum resonances in photonic crystals and thin films with electromagnetically induced transparency

C. H. Raymond Ooi1,2,* and C. H. Kam3

1Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
2School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor DarulEhsan, Malaysia
3School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore, Singapore

Received 3 February 2010; revised manuscript received 12 April 2010; published 25 May 2010

Quantum coherence or phaseonium medium with electromagnetic-induced transparency (EIT) may have been widely explored, but the incorporation of boundaries into finite structures like thin films and photonic crystals introduce additional resonant features. A narrow transmission peak exists in resonant medium due to multiple reflections and interference. The corresponding analytical formulas for absorptive and EIT media are derived. A double dip feature is found only for transverse magnetic polarized light, due to longitudinal electric field component in a Fabry-Perot thin film. We study these resonant features in a finite superlattice and discuss potential applications of the features. For phaseonium medium with laser-driven gain, transmission and reflection peaks beyond unity appear between the two EIT resonances. Realizations using solid-state materials such as doped crystals and quantum dots with potential applications are discussed.

DOI: 10.1103/PhysRevB.81.195119 PACS number(s): 42.50.Gy, 78.67.Pt, 42.50.Nn, 42.25.Bs

Electromagnetic-induced transparency (EIT) 4 is a quantum phenomena that has been widely studied in quantum and photonics systems, ranging from nonlinear optics 2 to metamaterials.3 A medium becomes transparent to a probe field as the result of quantum interference when a laser field drives a transition in a three-level Λ (Raman) scheme. Single resonance is split into double resonances, and its interference transforms an opaque medium into transparent. The same physics underlies the famous Fano resonance4 in discrete-continuum quantum systems.

Classical interference can also occur in light as the result of multiple scattering/reflections off boundaries, such as artificially engineered structures. Superstructures composed of exotic materials, such as superconductors in photonic crystals, show new optical features.5,6 We believe the combination of classical and quantum interference in a photonic crystal composed of dielectric and controllable quantum coherence medium can provide new interesting results. The effect of EIT in one-dimensional (1D) photonic crystal structure was first studied by Andre \textit{et al.}7 They created spatial periodic field grating by using counter-propagating control lasers, which forms periodic regions of high transparency (due to EIT) and high absorption corresponding to antinode and nodes of the control field, respectively.

In this paper, we consider similar structure but with different emphasis. We analyze the band structure of a superlattice composed alternating layers dielectric and quantum coherence (phaseonium)8 medium driven by a laser field, as shown in Fig. 1. There are two types of resonances: (a) the usual Stark resonances—due to the ac Stark splitting of the quantum states as the result of the control laser and (b) structural resonances—due to the periodicity of the structure causes further splitting within each of the double resonances of the EIT. We will discuss the parameter that governs the size of the splitting. The physics of the former is well understood. However, the origin of the latter seems obscure despite its classical origin due to boundaries and this would be the main focus for analysis in the present work. The presence of boundaries in periodic structure also has interesting effects of the propagation of light.6 We will discuss several useful applications of these effects.

I. RESONANT AND PHASEONIUM MEDIA

The quantum coherence (phaseonium) medium is composed of three-level atoms where the control laser with Rabi frequency Ω\textsubscript{c} gives electromagnetic induced transparency. The linear response is given by the dielectric function ε\textsubscript{i}(ω)=ε\textsubscript{i0}+\chi(1)(ω) with ε\textsubscript{i0} is the dielectric constant of the background medium and the field-dependent susceptibility9

\[\chi(1)(\omega) = \frac{iN|\gamma_{ab}|^2}{\hbar \varepsilon_\text{i0}} \left[Y_{ab}(\omega) - Y_{ac}(\omega) \right] w_{ab} + I_c \]

with Y\textsubscript{ac}=γ\textsubscript{ac}−iΔ\textsubscript{c}, Y\textsubscript{ab}(ω)=γ\textsubscript{ab}−iΔ(ω), and Y\textsubscript{bc}(ω)=γ\textsubscript{bc}−i[Δ\textsubscript{c}−Δ(ω)] and w\textsubscript{ab}=ρ\textsubscript{ab}−ρ\textsubscript{bc}, w\textsubscript{ac}=ρ\textsubscript{ac}−ρ\textsubscript{ab}. The effec-

![FIG. 1. (Color online) (a) Three levels scheme for phaseonium medium driven by a control laser with Rabi frequency Ω\textsubscript{c}. Schematics for: (a) single interface medium, (b) Fabry-Perot or thin film (double-interface) medium, and (d) superlattice composed of finite number of alternating phaseonium and dielectric layers. The phaseonium medium (layer) can be a crystal film doped with rare-earth ion, or multiple quantum dot (QD) planes stacked together.](image-url)
of double interface, or Fabry-Perot etalon of thickness d between input (i) and output (o) fields, $\tilde{F}_{io} = \frac{\tilde{F}_{0i}}{1 + \tilde{F}_{0i}^2}$, $\tilde{I}_{io} = \frac{\tilde{I}_{0i}}{1 + \tilde{F}_{0i}^2}$, where $\tilde{f} = \exp(ik_qd)$. The transmittance for single interface, $T = \tilde{F}_{11}^2$ of $|\tilde{F}_{11}|^2$, and for double interface, $T = |\tilde{F}_{11}|^2$, are computed in Figs. 2–5 for incident fields $\theta=0^\circ$ and 45° for both polarizations. Similarly, the reflectance can be computed using $R = |\tilde{F}_{01}|^2$, $R = |\tilde{F}_{10}|^2$.

B. R and T for superlattice

For superlattice with finite number of dielectric-phaseonium pairs, the band structure (ω versus K), reflection $R = |\tilde{r}|^2$, and transmission $T = |\tilde{t}|^2$ are computed in a standard way from the well-known13 reflection and transmission coefficients

$$r = \frac{(M_{11} + M_{12}p_f)p_i - (M_{21} + M_{22}p_f)}{(M_{11} + M_{12}p_f)p_i + (M_{21} + M_{22}p_f)},$$

$$t = \frac{s_{ij}2p_i}{(M_{11} + M_{12}p_f)p_i + (M_{21} + M_{22}p_f)},$$

where M_{ij} are the components of the matrix

$$M = \begin{pmatrix}
 m'_{11}U_{N-1} - U_{N-2} & m'_{12}U_{N-1} \\
 m_{21}U_{N-1} & m_{22}U_{N-1} - U_{N-2}
\end{pmatrix},$$

m'_{ij} are components of 2×2 matrix $m'(m_{ij})^{-1}$.

A. R and T for single and double interfaces

Interference of waves from multiple reflections and refractions at boundaries can give rise to interesting resonant structures. In order to gain some physical understanding on this effect, let us now analyze the transmission and reflection for the simplest cases, medium with one and two interfaces. For single interface between incident medium i and the quantum coherence medium q we use the well-known Fresnel relations $r_{12}^{(p)} = \frac{\sin(k_qa + k_qd) - \sin(k_qd)}{\sin(k_qa + k_qd) + \sin(k_qd)}$, $r_{12}^{(s)} = \frac{\sin(k_qa + k_qd) - \sin(k_qd)}{\sin(k_qa + k_qd) + \sin(k_qd)}$, $r_{12}^{(d)} = \frac{2\sin(k_qa + k_qd)}{k_qa + k_qd}$. For double interface, 2.5×10^{-5} Cm, $N=10^2$ m$^{-3}$, and $\gamma_{b}\approx=0.5 \times 10^8$ s$^{-1}$. For simplicity we use $\gamma_{a}=0$, $\alpha_{b}=1$, and $\rho_{bc}=1$.

FIG. 2. (Color online) Reflection R and transmission T for resonance medium without EIT ($\Omega_z=0$) and normal incidence $\theta=0^\circ$. The dielectric function is $\varepsilon_{d}(\omega, \Omega_z=0)$. For double interface, the thickness is $d=0.2$ μm. Both polarizations give identical results due to normal incidence. The narrow resonance is emphasized by a (red) circle. We use the following parameters for quantum dot based materials. We plot the dispersion ω_{bc} as on Ref. 10:

$$\omega_{bc}(0) = 10^{15} \text{ s}^{-1}$$

and $\gamma_{bc} = 10^{-30} \text{ C m}$.

FIG. 3. (Color online) Reflection R and transmission T for resonance medium with EIT ($\Omega_z=500\gamma_{bc}$) and normal incidence $\theta=0^\circ$. Other parameters are the same as in Fig. 2.
At around the resonance, $\left(\frac{\pi}{3}(\gg 1)\right)$ is large and $\sqrt{\epsilon} = i \sqrt{\frac{2}{3}}$, giving a simple expression

$$T_{\text{abs}} = \frac{16\epsilon}{(1 + \sqrt{\epsilon})^4 + (1 - \sqrt{\epsilon})^4 - \left[\frac{\eta}{\Delta}\right]^2 \cos(\beta\sqrt{\epsilon})}.$$

For TE-polarized light, $p_j = \xi / \epsilon_j \cos \theta_j = \frac{\xi_{\text{in}}}{\epsilon_{\text{in}}}, \eta_{\text{in}} = \sqrt{\epsilon_{\text{in}}}/\mu_{\text{in}},$ and $s_{ij} = \sqrt{\epsilon_j/\epsilon_i}, i$ is the input/incident medium and f is the final (output) medium. We use $\epsilon_1 = 1$ and $\epsilon_2 = \epsilon_2(\omega)$ for the resonant (absorptive or EIT) medium to obtain the results below.

II. RESULTS

We analyze the optical effects of the finite structures with EIT medium by computing the dispersion of EIT; the reflection and transmission spectra for single interface, double interface, and superlattice; and the band structure.

A. Narrow resonance and double dip

For normal incidence $\theta=0^\circ$, the p and s polarizations give identical results (Figs. 2 and 3). In the absence of control field ($\Omega_{\omega} = 0$ no EIT), a single (fine) narrow resonance peak emerges from the absorption window in transmission spectra for the case of double interface, i.e., a thin layer composed of lossy medium, as shown in Figs. 2 and 4. Note that this feature does not exist in bulk medium with constant dielectric, shown in Figs. 2 and 4. Note that this feature does not exist in bulk medium with constant dielectric, shown in Figs. 2 and 4. In other words, the narrow transmission peak (Fig. 2) corresponds to the so-called quasiwomb mode due to multiple interference of the absorption modes.

For the case of single-slab phaseonium, there are two mechanisms involved that create the resonant features. In the presence of EIT (phaseonium medium), however, the single resonance peak is split into double resonances (Fig. 4) by quantum interference (hole burning). Each resonance carries along the quasiwomb mode, thus creating two narrow transmission peaks within the two absorption peaks.

In order to gain physical insight on the narrow feature, let us analyze the transmission for s-polarized light in normal incidence. Using t_{∞} expression above, we have

$$T = \frac{16\epsilon_j}{(1 + \sqrt{\epsilon_j})^4 e^{-i\beta_j\sqrt{\epsilon_j}} - (1 - \sqrt{\epsilon_j})^4 e^{i\beta_j\sqrt{\epsilon_j}}^2},$$

where $\beta = \omega d/c$. Equation (7) generally applies for any complex function of ϵ_j and can be simplified to a more insightful form. In the absence of EIT, the dielectric function (without Doppler effect) is $\epsilon_j(\omega) = 1 - \frac{\mu_j}{\omega^2\epsilon_j}$ with $\eta_j = \sqrt{\mu_j}/\epsilon_j,$ corresponds to an absorptive medium with single resonance. By neglecting the $\Gamma_{\omega}/2$, the dielectric function is real $\epsilon_j(\omega) = 1 - \frac{\pi}{\Delta} \epsilon(\Delta)$, which leads to a more suggestive expression

$$T_{\text{abs}} = \frac{16\epsilon}{(1 + \sqrt{\epsilon})^4 + (1 - \sqrt{\epsilon})^4 - \left[\frac{\eta}{\Delta}\right]^2 \cos(\beta\sqrt{\epsilon})}.$$
which contains hyperbolic function in the denominator, containing a pole that is partly responsible for the narrow transmission peak within a broader resonant dip, as in Fig. 2. The “1” and “6” in the denominator of Eq. (9) are necessary to avoid singularity in the profile despite the condition \(\gamma \gg 1 \).

For the case with EIT we obtain an analytical expression, in the same way, simply replacing \(\sqrt{\Delta} \) by \(\sqrt{\frac{\Delta(\Delta_+-\Delta)}{\Delta(\Delta_+-\Delta)+I_c}} \), giving

\[
T_{\text{abs}} = \frac{8}{\eta} \cosh \left(\frac{\eta \sqrt{\Delta}}{\Delta} - 1 \right) + 6,
\]

\[
T_{\text{EIT}} = \frac{8}{\eta(\Delta_+-\Delta)} \left(\cosh \left(\frac{\eta(\Delta_+-\Delta)}{\Delta(\Delta_+-\Delta)+I_c} - 1 \right) + 6 \right),
\]

where \(\Delta(\Delta_+-\Delta)+I_c \) gives the double resonances at \(\Delta = \frac{1}{2} (\Delta_+ \pm \sqrt{\Delta^2 + 4I_c}) \).

Equations (8) and (10) are simple analytical expressions that correctly describe all the main features for double interface (from exact simulation) in Figs. 2 and 3, respectively. The presence of EIT splits the absorption peak into two and duplicates the narrow structure into two sets (Fig. 3). The doubling of the resonances is due to the splitting of the atomic levels by the control field. Here, we find that the two narrow resonance peaks provide very precise measurement of the width of the Autler-Townes splitting, i.e., \(2\Delta_c \).

In the case of \(\theta=45^\circ \), the \(p \)-polarized light gives an additional feature not found in the \(s \)-polarized light, i.e., a dip in the reflection peak and a peak in the transmission dip, creating double dip structures, Fig. 4. The spacing between the dips is found to be proportional to the medium number density \(N_c \). This feature could be used for measurement of the optical density of the phaseonium medium, and physical quantities like pressure and temperature that vary with the density of the medium. The EIT duplicates the narrow resonance and double dip features into two sets (Fig. 5), as in the case \(\theta=0^\circ \).

B. Optical structures in superlattice

We now analyze the band structure, reflectance, and transmittance for superlattice with finite length. Figure 6(a) shows the results for zero control field, i.e., no EIT effect. It is interesting to note the double dip feature remains, but is shaped into more well-defined regions of absolute reflection or zero transmission. This is the result of multiple interference of the longitudinal component of electric field in the periodic structure. Figure 6(a) highlights [in (red) circle] the narrow transmission resonance, which remains exactly at 5.25, as in the case of double interface of Figs. 2 and 4.

In the presence of EIT (finite control laser field), Fig. 6(b) shows the two pairs of double dip are separated apart by \(2\Delta_c \) (for \(\gamma_c = 0 \)). The pairs are referred to as upper resonances (URs) and lower resonances (LRs). The double dip and narrow transmission features are also present, as in the case of double interface of Figs. 3 and 5. The plot for \(R+T \) shows that the lossy regions always correspond to the transmission band between the double dip as well as the narrow transmission peak.

So, what are the effects resulting from the 1D photonic (phaseonium) crystal? The periodicity of the photonic crystal gives rise to well-defined band gaps as well as intricate features of the reflection/transmission spectra shown in Fig. 6. It provides extra degrees of freedom for controlling the spectra through the number of paired layers \(N \) and the relative thickness of the dielectric layer \(d/a \). Figure 7 shows how the widths of the two resonances [in (red) circles] within the UR and LR can be tuned by changing \(d/a \). When the phaseonium layer is dominant, \(d=0.1a \). Fig. 7(a), the dispersive branches become quite flat (slow group velocity, i.e., small \(d\omega/dK \)). The small relative thickness of the dielectric layer gives rise to wider double dip which corresponds to two narrow transmission peaks. On the other hand, if the structure is dominated by dielectric, i.e., thin phaseonium layer, \(d=0.9a=40 \) nm we obtain [Fig. 7(b)] two pairs of narrow
CONTROLLING QUANTUM RESONANCES IN PHOTONIC... PHYSICAL REVIEW B 81, 195119 (2010)

FIG. 7. (Color online) Band structures with TM polarization and \(\theta=45^\circ \) for different dielectric layer thicknesses \(d \) show the variation in the structure resonances, (a) \(d=0.1a \) and (b) \(d=0.9a \). Here, \(\Omega_c=1000\gamma_{ac} \). Other parameters are as in Fig. 6.

Reflection peaks corresponding to two pairs of narrow dips (with two broader transmission bands).

If initially there is population in level \(c \), the first term in Eq. (1) contributes to the imaginary part of the susceptibility. Thus \(\omega_{ac}<0 \) is expected to yield large gain since in gainless situation, \(\text{Im} \chi^{(1)}>0 \). Figure 8 shows the case where levels \(c \) and \(a \) have small populations \(\rho_{cc}^{(0)}=0.002 \), \(\rho_{ac}^{(0)}=0.001 \) based on Eqs. (2) and (3) giving an inversionless gain \(g_0 \) proportional to \(\rho_{cc}^{(0)}I_{cc} \), based on the negative imaginary part of \(\chi^{(1)} \) in Eq. (1). For single interface, \(R \) and \(T \) do not exceed unity. Only for the double interface and superlattice, \(R \) and \(T \) can exceed unity since the probe field amplifies by acquiring extra energy from the control field. The “superunity” reflection peaks appear around the two EIT resonances while the plateau of the transmission spectra lies between the resonances. For superlattice, it is interesting that the superunity resonance peaks of both \(R \) and \(T \) are between the two EIT resonances, i.e., the region of transparency and gain.

Figure 9 shows the variations in \(R \) and \(T \) spectra with \(\rho_{cc}^{(0)} \) for the superlattice, for different decay rate, densities and driving fields. For smaller control field, i.e., \(\Omega_c=50\gamma_{ac} \), a series of high (twin) peaks can be seen as \(\rho_{cc}^{(0)} \) increases toward \(\rho_{cc}^{(0)} \). However, such high transmission and reflection peaks do not appear for values beyond \(\rho_{cc}^{(0)} \). For \(N=10^{23} \text{ m}^{-3} \) with \(|\rho_{ac}|=8 \times 10^{-30} \) Cm the maximum peak is at \(\rho_{cc}^{(0)}=0.024 \) [Figs. 9(a) and 9(b)]. When the density increases by ten times to \(N=10^{24} \text{ m}^{-3} \), the peak location decreases by ten times. However, in Fig. 9(c), the \(\gamma_{ac} \) is increased by two times, which explains why the peak is at \(\rho_{cc}^{(0)}=0.0048 \) instead of 0.0024. Analysis of Fig. 9 leads to an empirical scaling formula which relates the new parameters (with “prime”) with the old ones,

\[
\frac{\rho_{cc}^{(0)\prime}}{\rho_{cc,\text{max}}^{(0)\prime}} = \frac{N}{N'} \frac{\gamma_{cc}'}{\gamma_{ac}}.
\]

III. PRACTICAL ASPECTS

We elaborate on the feasibility of using solid-state materials as the phaseonium medium and discuss potential applications of the spectral features found above.

A. Solid-state implementations

Although the EIT model presented is based on atomic systems, it is applicable to solid-state materials. The phaseo-
used in the above Figs. 2–9 are applicable to doped crystal well as through cooling down to 2 K. Thus, the parameters are the same as in Fig. 8. For each \(\rho_{cc}^{(0)} \), we obtain \(\rho_{cc}^{(0)} \) consistently after solving for \(\gamma_{cc} \) using \(L_c(\Gamma_c + \gamma_{cc})/2D = 1/2 - \rho_{cc}^{(0)}. \)

The dephasing rates for the quantum dots at temperature of a few Kelvin is tenfold larger (i.e., \(\gamma_{cc} = \gamma_{ab} = 5 \times 10^9 \text{ s}^{-1} \)) than atomic rates, due to the large dephasings. We find that this only causes the separation between the two sets of peaks (more clearly seen in Fig. 9(b)) to increase by ten times (figure not shown), while the main features of the spectra (such as \(\rho_{cc}^{(0)} \)) remain unaffected. The features in Fig. 9 satisfy the scaling laws discussed above, showing the applicability of the \(\Lambda \) scheme to stacked layers of quantum dots.

Thus, the above results that were computed using atomic \(\Lambda \) scheme parameters are applicable to phaseonium medium constructed from doped crystal and stacked layers of quantum dots.

B. Potential applications

The results can provide new applications. For example, the transmission peak is much narrower than the EIT width and therefore could be useful in high-precision spectroscopy as well as ultrasonic light buffer or optical memory in all-optonic circuits. Also, the narrow peaks in Fig. 7(b) could be used to construct correlated band-edge laser since the two peaks are strongly correlated due to EIT. In the case of finite gain in the multilayer case, the narrow peak with high transmission could be used as a gain medium to construct a laser with ultranarrow linewidth. The presence of gain in active structures can be used to compensate for absorption loss, promoting the practical use of metamaterials and photonic crystals to a wider domain. Since the location of the narrow peak depends on the thickness of the phaseonium layer, it could be useful as a sensitive piezooptic switch.

IV. CONCLUSIONS

We have studied the effects of structural boundaries on quantum resonances. We found useful narrow resonant feature in the transmission and reflection spectra of thin film and superlattice composed of absorbing or quantum coherence (phaseonium) medium. The narrow feature is due to the combination of material resonance and bounded mode present within a thin slab; but does not occur either in bulk medium nor frequency region of dielectric function without resonance. We also study the spectra when the medium has gain. The features are supported by physical explanation and analytical formulas. These features can be engineered using solid-state materials such as doped crystal or quantum dots for developing functional photonic devices that can be controlled by the laser field and structural variables.

ACKNOWLEDGMENTS

R. O gratefully acknowledges Nanyang Technological University for hospitality during the recent research visit and Monash University for supporting the computational facility. This work is also supported by University of Malaya Research Grant RG111.
CONTROLLING QUANTUM RESONANCES IN PHOTONIC...

PHYSICAL REVIEW B 81, 195119 (2010)

*\texttt{bokoo73@yahoo.com; rooi@um.edu.my}

