Investigation about the characterization of machine tool spindle stiffness for intelligent CNC end milling

Ahmed A.D. Sarhan a,b,⁎, Atsushi Matsubara c

a Centre of Advanced Manufacturing and Materials Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516, Egypt
c Department of Micro-Engineering, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8317, Japan

A R T I C L E I N F O

Article history:
Received 2 June 2014
Received in revised form 31 October 2014
Accepted 13 December 2014
Available online 31 December 2014

Keywords:
Spindle stiffness
Cutting forces
Machine tool
Monitoring
Intelligent machining

A B S T R A C T

This paper describes how to investigate the characterization of the machine tool spindle stiffness in radial direction for precise monitoring of cutting forces in end milling process by using displacement sensors. Four sensitive eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure, and the stability of the displacement sensing is examined. The change in spindle stiffness due to the spindle temperature and the speed is investigated. Finally, monitoring results of small and medium scale cutting forces in end milling operations are shown as a case study.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In order to realize high productive and flexible machining systems, intelligent machining functions have been developed for NC machine tools [1]. Among those intelligent functions for machining centers, monitoring functions of cutting forces are important issues [2], as they could tell limits of cutting conditions, accuracy of the workpiece, tool wear, and other process information, which are indispensable for process feedback control in intelligent machining [3]. In the researches on cutting force monitoring, there are two approaches: internal sensor approach and external sensor approach [4]. Some researchers have succeeded in the cutting force monitoring by utilizing motor currents in CNC-Servo systems [5]. However, it is difficult to use motor currents for the monitoring of cutting forces in an end-milling process, since the magnitude and the direction of cutting forces change frequently and the friction change on guideways influences the monitoring accuracy [6]. For such applications, external sensor approach is promising, and there are many researches on cutting force monitoring by using several types of sensors such as strain gauges, force sensors, acceleration sensors and so on [7].

Among those external sensors, the authors have employed displacement sensors, as they are cheap and small enough to be built in the spindle structure [8]. Displacement signals are translated into cutting force information by using the spindle stiffness model [9]. For the monitoring of cutting forces using displacement sensors, however, the spindle stiffness should be constant in the cutting process. For this reason, characterization of the spindle stiffness in radial direction should be investigated as well as the factors that affect the spindle stiffness [10]. It is well known that the spindle speed and the temperature parameters are mainly responsible for changing the state of ball contact and the preload of the bearing systems [11]. Therefore, it is likely that the spindle speed and temperature influence the spindle stiffness. For this reason the effect of these parameters on the spindle stiffness is investigated. In this research, a spindle with displacement sensors and thermal sensors is developed to monitor the spindle displacement and stiffness. First, the behavior of the spindle displacement in radial direction is investigated by using four displacement sensors. Second, the change in spindle stiffness due to the spindle speed and temperature is identified. Finally, tests for the monitoring of cutting forces in end milling operations are carried out.

2. Measurement of the spindle displacement

2.1. Experimental setup

In order to develop monitoring functions, displacement sensors and thermal sensors are installed on the spindle unit of a high precision machining center. The machine used in the study is a vertical-type machining center (GV503 made by Mori Seiki),
The spindle has constant position preloaded bearings with oil–air lubrication, and the maximum rotational speed is 20,000 rpm. Four eddy-current displacement sensors are installed on the housing in front of the bearings to detect the radial motion of the rotating spindle. The specifications of the sensor are as follows: measurement range is 1 mm; nominal sensitivity is 0.2 mm/V ± 1%; dynamic range is 1.3 kHz; linearity is ± 1% of full scale. Fig. 1 shows the sensor locations. The two sensors, S_1 and S_3, are aligned opposite in the X direction, and the other two, S_2 and S_4, are aligned opposite in the Y direction. In order to measure spindle temperature, several thermocouples are attached to the spindle structure. Those thermocouples include T_1 and T_2 shown in Fig. 1. T_1 is installed on the bearing retaining cover, and T_2 is installed on the body of the spindle unit, which is near the windings of the built-in motor.

2.2. The concept of the displacement measurement

Fig. 2 shows the concept of the spindle displacement measurement. When the spindle axis shifts by $\Delta x \mu$m in the X direction due to the cutting force and thermal effects, the displacement signals from S_1 and S_3 are as follows.

$$S_1(\theta) = G[R_1 - r(\theta) - \Delta x]$$

$$S_3(\theta) = G[R_3 - r(\theta + \pi) + \Delta x]$$

where G is the sensor sensitivity [mV/μm], R_i is the distance between the spindle center and detection surface of the sensor S_i [μm] ($i = 1, ..., 4$), θ is the rotation angle of the spindle [rad], $r(\theta)$ is the sum of the radial error motion and surface roughness of the sensor target [μm].

Subtracting the displacement signals and dividing the subtraction by two, we obtain

$$S_x(\theta) = \frac{|S_3(\theta) - S_1(\theta)|}{2}$$

Letting $S_x(\theta) = S_{x0}(\theta)$ such that $\Delta x = 0$, and subtracting $S_{x0}(\theta)$ from $S_x(\theta)$

$$S_x(\theta) - S_{x0}(\theta) = G\Delta x$$

Then we obtain the axis shift Δx as follows.

$$\Delta x = \frac{|S_x(\theta) - S_{x0}(\theta)|}{G}$$

Similarly, the axis shift in the Y direction, Δy, is calculated from the displacement signals from S_2 and S_4. The axis shift is called the spindle displacement hereafter.
2.3. Experimental result

For the measurement of the spindle displacement due to the cutting forces, the sensor signals should be stable for any other disturbance. To check the stability of the sensing, the spindle displacement and temperature are measured during the spindle rotation without cutting. The spindle is started at 3000 rpm and kept rotating for 1 h. After that the spindle speed is increased to 6000 and 9000 rpm for every hour. Fig. 3 shows an example of measured displacement signals at the spindle speed of 6000 rpm. Fig. 4 shows the subtraction signals of the opposite sensors. As shown in Fig. 3, all the sensor signals involve two types of fluctuation: a transient response type and a periodic type. These fluctuations appear in the spindle displacement, and they are remaining in the subtraction signals shown in Fig. 4. Fig. 5 shows the measured spindle temperature.

The transient response can be seen in the temperature measured by sensor T_1, and the periodic fluctuation can be seen in sensor T_2. The same fluctuations are also observed in the measurement results at other spindle speeds, but the periodicity and range are different for each spindle speed. The transient fluctuation type is related to the thermal expansion of the spindle, while the periodic fluctuation type is related to the cooling control of the oil, which is circulating inside the spindle body.

3. Measurement of the spindle stiffness

3.1. Experimental procedure

In the previous section, it can be seen that the fluctuation of the spindle displacement depends on the spindle temperature. Therefore, we can compensate the fluctuation by monitoring the spindle temperature. For the monitoring of cutting forces, however, the spindle stiffness should be constant in the cutting process. For this reason, characterization of the spindle stiffness in radial direction...
should be investigated as well as the factors that affect the spindle stiffness. For the measurement of the spindle stiffness in the radial direction, the load in this direction is necessary to deflect the spindle and to be measured precisely. The static loading test is widely used to evaluate the overall stiffness of machine tools. The stiffness obtained by the static test, however, typically shows hysteresis characteristics, because the contact area of the bearing changes as the load direction changes. More importantly, the static stiffness is different from the stiffness of the rotating spindle. Therefore, we carry out cutting tests to provide dynamic load and measure cutting forces with a table type tool dynamometer (Model 9257B made by Kistler).

Fig. 6 shows the tool paths for cutting tests. The tool moves in the $-X$ direction and then $+X$ direction with the radial depth of cut varied from 0 to 1 mm. In the $-X$ direction the cutting mode is down-cut, while in the $+X$ direction it is up-cut. To remove residual stock, each path is repeated. The cutting time for one operation is about 4 s, which is short enough to avoid the thermal disturbances on displacement signals. Table 1 shows the cutting conditions.

First the spindle is rotated at 3000 rpm without cutting for 20 min for the first warm-up. Then, the 1st cutting test is carried out at three spindle speeds. Then the spindle is warmed up again at the speed of 6000 rpm for 30 min without cutting. The same cutting test (the 2nd cut) is repeated, and followed by the spindle warm-up.
operation at the speed of 9000 rpm for 30 min. The spindle
displacement signals are digitized with a 16-bit A/D board, and
the cutting force signals (X, Y, and Z directions) from the dynam-
ometer are digitized with a 12-bit A/D board. For the measurement
of rotational angle of the spindle, A, B, and Z pulses of the rotary
encoder, which is originally used for the spindle speed control, are
counted with a 32bit-counter board.

The encoder is used to synchronize the signals as it has a
reference channel, which gives one impulse per revolution that can
be triggered at exactly the same spindle position. The sampling

![Fig. 10. Identified spindle stiffness on different cutting conditions (a) X-axis direction and (b) Y-axis direction.](image1)

![Fig. 11. Workpiece and tool paths used in each process. (a) Helical boring Z-pitch: 1 mm/round, and (b) spiral circle enlargement, (c) trochoidal slotting, and (d) trochoidal corner rounding.](image2)

![Fig. 12. Comparison of the estimated an measured cutting force in corner-cut in X-axis direction.](image3)

![Fig. 13. Monitoring error (measured minus estimated cutting force) in corner-cut.](image4)

![Fig. 14. Comparison of the estimated and measured cutting force in trochoidal-cut in the X-axis direction.](image5)
frequency is set so that 40 points per one spindle revolution can be obtained. The subtraction of the digitized signals of the opposite sensors in one rotation, \(S_0(m) \) \((m=1, \ldots, 40, j=x, y)\), are recorded in the PC memory prior to the cutting. When the cutting is started and the subtraction signal for one revolution, \(S_j(m) \), are obtained, \(S_0(m) \) are subtracted from \(S_j(m) \) for each index \(m \). The subtraction data are filtered by a moving average filter. Then the spindle displacements in the X and Y directions are obtained and compared with measured cutting forces. The signal processing algorithm for the identification of spindle stiffness is shown in Fig. 7.

3.2. Experimental results

Fig. 8 shows the measured spindle temperature by thermocouple \(T_1 \) during the entire experiment. After the 1st warm-up term, the spindle temperature was around 19°C. The increase of the spindle temperature was 2°C in the 2nd and 3rd warm-up terms, respectively. Fig. 9 shows an example of the relationships between the spindle displacement and the cutting force at the spindle speed of 3000 rpm. As shown in these figures, the relation can be approximated linearly, but the \(y \)-section of the line is not exactly zero because of the nonlinearity around the origin. The spindle stiffness is identified by using linear approximation.

Fig. 10 shows the identified spindle stiffness in different cutting conditions. The spindle stiffness indicates slight correlation with the spindle temperature and speed. As for the stiffness data at the spindle speed of 3000 rpm in down cut, the estimated stiffness is smaller than that of other conditions. Checking the force range of the data, we found that the air-cut term, where spindle is rotating without cutting, is not long enough to get the same force range as other conditions. This indicates the existence of the nonlinearity in the force–displacement relationship, but we assume that the spindle stiffness is constant. By taking the average of the estimated stiffness for the cutting force range 0–400 N, we concluded that the estimated spindle stiffness is 117 N/μm in the X direction, and 110 N/μm in the Y direction. The slight difference in the stiffness between X and Y axes might come from the sensitivity difference of each sensor, as we use the nominal sensitivity value for each sensor.

4. Case study on monitoring of cutting forces

In this section, a cutting test is carried out to validate the monitoring performance. A cutting process of a rectangular pocket feature is selected as a case study, as several sub-features are involved in the entire cutting process. The entire process consists of the following sub-processes: (a) boring with helical cycles, (b) circle enlargement with spiral cycles, (c) slotting with trochoidal cycles, and (d) corner rounding with trochoidal cycles. Fig. 11 shows the workpiece and the tool paths used in each process. We use the same cutting tool as shown in Table 1. The spindle speed is 3000 rpm, and the axial depth of cut is 10 mm. As each process has different feed rates and radial depths of cut, the entire process monitoring is a difficult subject. Spindle displacements in the X and Y axes are monitored by using the same measurement system shown in Section 2. Cutting forces are estimated by multiplying measured spindle displacements and the average stiffness identified in Section 3. The results are compared with cutting forces measured with the dynamometer. The spindle temperatures \(T_1 \) and \(T_2 \) are monitored simultaneously.

By comparing the estimated and measured cutting forces in each process, monitoring errors (measured minus estimated) are calculated. Fig. 12 shows the comparison of the estimated and measured cutting force in the corner-cut process; Fig. 13 shows the monitoring errors. In the corner-cut process, the components of the monitoring error are a periodic error and a drift error. The spindle temperature \(T_1 \) has the small range of fluctuation in the entire term, but the spindle temperature \(T_2 \) has the periodic fluctuation. The periodic temperature fluctuation corresponds to the drift error in Fig. 13.

Figs. 14 and 15 show results in the trochoidal slotting process. Fig. 16 shows the estimated and measured cutting forces in the one cycle. As can be seen in Fig. 16, the time lag is observed between the estimated and measured profiles. Moreover, the measured profile does not reach estimated one at the bottom. So the average spindle stiffness that used to estimate the force seems to be a little larger than the true value when the cutting force is over 400 N. As the experimental data set that is used for the identification of the spindle stiffness ranges from 0 to 400 N, the spindle stiffness are to be re-modeled for the monitoring of larger cutting forces.

The monitoring errors in each process are summarized in Table 2. The large estimation errors in the spiral cut are caused by the same reason as shown in the trochoidal-cut. Both of these

![Image](331x415 to 523x566)

Fig. 15. Monitoring error (measured minus estimated cutting force) in trochoidal-cut.

![Image](523x566 to 718x752)

Fig. 16. Cutting forces in one cycle (enlargement of Fig. 14).

<table>
<thead>
<tr>
<th>Process</th>
<th>Axis</th>
<th>Monitoring errors N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper</td>
<td>Lower</td>
</tr>
<tr>
<td>Helical-cut</td>
<td>X</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>29.8</td>
</tr>
<tr>
<td>Spiral-cut</td>
<td>X</td>
<td>94.9</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>91.6</td>
</tr>
<tr>
<td>Trochoidal-cut</td>
<td>X</td>
<td>67.3</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>55.9</td>
</tr>
<tr>
<td>Corner-cut</td>
<td>X</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>24.9</td>
</tr>
</tbody>
</table>
cutting processes are more complicated compared with helical and corner cut where the tool changes its direction frequently during cutting, hence time lag and modeling error of the spindle stiffness is subject to higher estimation.

5. Conclusion

Displacement sensors and thermocouples are installed on the spindle structure of a machining center to investigate the characterization of the machine tool spindle stiffness in radial direction for precise monitoring of cutting forces in the end milling process. Due to the thermal changes in the spindle and/or bearing, the displacement sensor signals involve two components of fluctuations: the transient fluctuation component related to the thermal expansion of the spindle and the periodic fluctuation component related to the cooling control of the oil. From the several experiments the following results are obtained:

1. The temperature increase due to the spindle rotation has a little effect on the change of the spindle stiffness.
2. The relationships between the spindle displacement and the cutting force at different spindle speeds can be approximated linearly, but the y-section of the line is not exactly zero because of the nonlinearity around the origin. However, in this research work the spindle stiffness is identified by using linear approximation.
3. The slight difference in the spindle stiffness between X and Y axes might come from the sensitivity difference of each sensor, as we use the nominal sensitivity value for each sensor.
4. As the experimental dataset that is used for the identification of the spindle stiffness ranges from 0 to 400 N, the spindle stiffness are to be re-modeled for the monitoring of larger cutting forces.
5. The causes of the cutting forces monitoring error are the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness.

Acknowledgments

This research has been supported by the MTTRF (Machine Tool Technologies Research Foundation) via Equipment on Loan Award Program and the high impact research (HIR) grant number "HIR-MOE-16001-00-D000027" from the Ministry of Higher Education, Malaysia.

References