Effect of Vermicompost Application on Bioactive Properties and Antioxidant Potential of MD2 Pineapple Fruits

Mawiyah Mahmud 1, Sujatha Ramasamy 1, Rashidi Othman 2, Rosazlin Abdullah 1,* and Jamilah Syafawati Yaacob 1,3,

1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; mawiyah@um.edu.my (M.M.); sujatha@um.edu.my (S.R.); rosalilin@um.edu.my (R.A.)
2 International Institute for Halal Research and Training (INHART), Herbarium Unit, Department of Landscape Architecture, Kulliyyah of Architecture and Environment Design, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia; rashidi@iium.edu.my
3 Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
* Correspondence: jamilahsyafawati@um.edu.my; Tel.: +60-3-7967-4090

Received: 25 January 2019; Accepted: 14 February 2019; Published: 19 February 2019

Abstract: Vermicompost is an organic waste produced from earthworms that can enhance the soil condition and is rich with essential plant nutrients, thus increasing produce quality and shelf life. In this study, a one-year field trial was conducted to elucidate the effects of vermicompost supplementation on the composition of bioactive compounds and antioxidant activities of pineapple (Ananas comosus var. MD2) fruits, compared to control and application of chemical fertilizer. Based on the results, pineapple fruits produced from plants supplemented with chemical fertilizer showed the strongest radical scavenging properties against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), followed by vermicompost and control plants. Application of chemical fertilizer and vermicompost also produced fruits with a very high content of chlorophylls and β-carotene compared to control plants. However, the amounts of bioactive compounds present in fruits produced with chemical fertilizer are higher than in fruits produced with vermicompost. Total phenolics content and Ferric Reducing Antioxidant Power (FRAP) reducing power were lowest in fruit extracts produced from pineapple plants supplemented with vermicompost. These results suggested that vermicompost cannot completely replace chemical fertilizer for the production of fruits with a high content of phytoconstituents but could be used as an additional supplement to reduce environmental pollution and ensure agricultural sustainability.

Keywords: vermicompost, organic agriculture; Ananas comosus; phytochemical; plant nutrient; bioactivity; sustainability

1. Introduction

Pineapple (Ananas comosus (L.) Merr.) belongs to the Bromeliacea or Bromeliad family and is generally cultivated for its fruit. The fruit can be eaten fresh, canned, frozen or made into juice, syrups or candied [1]. Today, pineapple is found in almost all subtropical and tropical areas of the world and has become one of the leading tropical fruits in international commerce [1]. The introduction of MD2 variety into the fresh pineapple market has increased its demand. The MD2 hybrid variety developed by Del Monte Fresh Produce International Inc. is currently the most preferred tropical fruit for both domestic and international markets [2]. A study by Wardy et al. [3] showed that MD2 variety has a great potential in the horticultural industry compared to Sugarloaf and Smooth Cayenne.