Natural Product Communications

EDITOR-IN-CHIEF
DR. Pawan K. Agrawal
Natural Product Inc.
7963, Anderson Park Lane,
Westerville, Ohio 43081, USA
agrawal@naturalproduct.us

EDITORS
PROFESSOR ALEJANDRO F. BARRERO
Department of Organic Chemistry,
University of Granada,
Campus de Fuente Nueva, s/n, 18071, Granada, Spain
abarrer@ugr.es

PROFESSOR ALESSANDRA BRACA
Dipartimento di Chimica Bioorganicae Biofarmacia,
Università di Pisa,
via Bonanno 33, 56126 Pisa, Italy
braca@farm.unipi.it

PROFESSOR DEAN GUO
State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences,
Peking University,
Beijing 100083, China
gda5958@163.com

PROFESSOR YASUHIRO TEZUKA
School of Pharmacy,
Tokyo University of Pharmacy and Life Sciences,
Hortorinochi 1432-1, Hachioji, Tokyo 192-0392, Japan
mimakiy@gsps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE
Department of Chemistry
University of Wollongong
Wollongong, New South Wales, 2522, Australia
spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE
Department of Chemistry,
Texas Christian University,
Fort Worth, TX 76129, USA
m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER
Department of Chemistry
The University of Alabama in Huntsville
Huntsville, AL 35809, USA
wsetzer@chemistry.uah.edu

PROFESSOR YASUHIRO TEZUKA
Institute of Natural Medicine
Institute of Natural Medicine, University of Toyama,
2630-Sugitani, Toyama 930-0194, Japan
tezuka@im.u-toyama.ac.jp

PROFESSOR DAVID E. THURSTON
Department of Pharmaceutical and Biological Chemistry,
The School of Pharmacy,
University of London, 29-39 Brunswick Square,
London WC1N 1AX, UK
david.thurston@pharmacy.ac.uk

ADVISORY BOARD
Prof. Berhanu M. Abegaz
Gaborone, Botswana

Prof. Viqar Uddin Ahmad
Karachi, Pakistan

Prof. Øyvind M. Andersen
Bergen, Norway

Prof. Giovanni Appendino
Novara, Italy

Prof. Yoshinori Asakawa
Tokushima, Japan

Prof. Lee Banning
Portsmouth, U.K.

Prof. Julie Banerji
Kolkata, India

Prof. Anna R. Bilia
Florencce, Italy

Prof. Maurizio Bruno
Palermo, Italy

Prof. César A. N. Catalán
Tucuman, Argentina

Prof. Josep Coll
Barcelona, Spain

Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Ana Cristina Figueired
Lisbon, Portugal

Prof. Cristina Gracia-Viguera
Murcia, Spain

Prof. Duvvuru Gunasekar
Tirupati, India

Prof. Kurt Hostettmann
Lausanne, Switzerland

Prof. Martin A. Iglesias Arteaga
Mexico, D. F., Mexico

Prof. Leopold Irovetz
Vienna, Austria

Prof. Vladimir I Kalinin
Vladivostok, Russia

Prof. Niel A. Koobanally
Durban, South Africa

Prof. Karsten Krohn
Paderborn, Germany

Prof. Chiaki Kuroda
Tokyo, Japan

Prof. Hartmut Laatsch
Gottingen, Germany

Prof. Marie Lacaille-Dubois
Dijon, France

Prof. Shou-Sheng Lee
Taipei, Taiwan

Prof. Francisco Macias
Cadiz, Spain

Prof. Imre Mathe
Szeged, Hungary

Prof. Emrino Murano
Trieste, Italy

Prof. M. Soledade C. Pedras
Saskatoon, Canada

Prof. Luc Pieters
Antwerp, Belgium

Prof. Peter Proksch
Düsseldorf, Germany

Prof. Phiia Rahbarvelomanana
Tahiti, French Polynesia

Prof. Luca Rastrelli
Fisciano, Italy

Prof. Monique Simmonds
Richmond, UK

Dr. Bikram Singh
Palampur, India

Prof. John L. Sorensen
Manitoba, Canada

Prof. Valentin Stonik
Vladivostok, Russia

Prof. Winston F. Tinto
Barbados, West Indies

Prof. Sylvia Urban
Melbourne, Australia

Prof. Karen Valant-Vetschera
Vienna, Austria

HONORARY EDITOR
PROFESSOR GERALD BLUNDEN
The School of Pharmacy & Biomedical Sciences,
University of Portsmouth,
Portsmouth, PO1 2DU U.K.
azufb4@dsl.pipex.com

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2013 subscription price: US$2,395 (Print, ISSN# 1934-578X); US$2,395 (Web edition, ISSN# 1555-9475); US$2,795 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Lipid Constituents of the Edible Mushroom, *Pleurotus giganteus* Demonstrate Anti-Candida Activity

Chia-Wei Phanab,c, Guan-Șerm Leeab,c, Ian G. Macreadiç, Sri Nuresti Abd Malekeab, David Pamelaad and Vikineswary Sbab

*aMushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
bInstitute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
cSchool of Applied Sciences, RMIT University, Victoria 3083, Australia
dDepartment of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

viki@um.edu.my

Received: May 10th, 2013; Accepted: October 10th, 2013

Different solvent extracts of *Pleurotus giganteus* fruiting bodies were tested for antifungal activities against *Candida* species responsible for human infections. The lipids extracted from the ethyl acetate fraction significantly inhibited the growth of all the *Candida* species tested. Analysis by GC/MS revealed lipid components such as fatty acids, fatty acid methyl esters, ergosterol, and ergosterol derivatives. The sample with high amounts of fatty acid methyl esters was the most effective antifungal agent. The samples were not cytototoxic to a mammalian cell line, mouse embryonic fibroblasts BALB/c 3T3 clone A31. To our knowledge, this is the first report of antifungal activity of the lipid components of *Pleurotus giganteus* against *Candida* species.

Keywords: *Pleurotus giganteus*, *Candida*, yeast, Antifungal, Medicinal mushroom, Fatty acid, Fatty ester methyl ester, Ergosterol.

Fungal infections are problematic for human health and are responsible for high rates of morbidity and mortality worldwide. Species of *Candida* are the dominant cause of opportunistic mycoses and among them, *C. albicans*, *C. glabrata*, *C. parapsilosis*, *C. tropicalis* and *C. krusei* account for 95–97% of all *Candida* infections [1,2]. *C. albicans* and *C. tropicalis* are susceptible to polyenes, fluocytosine, azoles and echinocandins, while *C. glabrata* is either susceptible or resistant to fluconazole[3]. Furthermore, *C. krusei* displays decreased susceptibility to amphotericin B, as well as fluconazole. Considering the increasing incidence of drug-resistant *Candida* infections, the search for more effective anti-*Candida* agents as an alternative to synthetic ones is needed. The interest in natural products from medicinal plants as a source of anti-*Candida* agents has grown dramatically. A wide variety of plant extracts have been reported to have anti-*C. albicans* activity. Examples include propolis, *Punica granatum* (pomegranate), *Streblus asper* (Siamese rough bush), *Vitis vinifera* (common grape vine), and tea tree oil from *Melaleuca alternifolia* [4].

Medicinal mushrooms are relatively less researched for their antifungal properties. However, in the last five years, there has been a renewed interest in using mushrooms as antimicrobial agents. *Lentinula edodes* (shiitake), *Boletus edulis* (Penny bun), *Pleurotus ostreatus* (oyster mushroom), *Coprinus comatus* (shaggy mane), *Astraeus hygrometricus* (earthstar mushroom), and *Cordyceps militaris* were shown to exhibit antifungal activity against *C. albicans* [5–8]. *Pleurotus giganteus* (Zhudugu, Dabeijun, morning glory mushroom), a saprobes mushroom, is one of the largest mushroom which grows on soil either as solitary or gregarious fruiting bodies [9]. This mushroom has gained popularity in China for its culinary properties. The medicinal properties of this mushroom are less known. We have previously reported the hepatoprotective and neuronal stimulating effects of *P. giganteus* [10,11]. In this study the antifungal activities of different solvent extracts of this mushroom were evaluated. The extracts prepared with different solvents had different profiles of fatty acids, and fatty acids have been shown to demonstrate antimicrobial activities [12]. The main metabolites / components in the extracts were analysed by GC-MS. As a preliminary in vitro toxicity assessment, the *P. giganteus* extracts were also investigated for cytotoxicity to mouse embryonic 3T3 fibroblast cells.

The anti-*Candida* activity of methanol, ethyl acetate and aqueous extracts of *P. giganteus* against all yeast species tested are summarised in Table 1. *Candida* species showed strong growth (denoted as “++++”) when extracts were not added to the medium. The aqueous extract had minimum or no inhibitory activity against all *Candida* spp. The ethyl acetate extract completely inhibited the growth of all *Candida* spp. when tested at 50 and 100 µg/mL. Thus, the ethyl acetate extract was fractionated to identify the active component/s responsible for the antifungal activity. Sub-fractions A to H were obtained and the minimum inhibitory concentration (MIC) values against all the tested yeasts are given in Table 2. The MIC values for all the *Candida* spp. tested, ranged from 2.0 ± 1.0 to 10.3 ± 2.5 µg/mL for sub-fraction A; and 9.3 ± 2.3 to 34.3 ± 10.8 µg/mL for sub-fraction B, respectively. The MIC values of

<table>
<thead>
<tr>
<th>Candida strains</th>
<th>Untreated</th>
<th>Solvent extracts (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methanol</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>Candida albicans WM1172</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida albicans ATCC90028</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida dubliniensis</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida glabrata CBS138</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida glabrata ATCC90030</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida krusei ATCC6258</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida pseudotropicalis</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida tropicalis WM30</td>
<td>++++</td>
<td>++++</td>
</tr>
</tbody>
</table>

Strains were grown with different mushroom extracts at the concentrations shown for two days on YEPD media. Growth was scored from “-“ to “++++”, indicating no growth to strong growth.

The MIC values for all the *Candida* spp. tested, ranged from 2.0 ± 1.0 to 10.3 ± 2.5 µg/mL for sub-fraction A; and 9.3 ± 2.3 to 34.3 ± 10.8 µg/mL for sub-fraction B, respectively. The MIC values of
sub-fraction C varied from 23.0 ± 11.0 to >50 µg/mL; whereas the MIC values for sub-fractions D-H were all >50 µg/mL. Overall, sub-fraction A showed the lowest MIC value for all Candida spp. tested.

Sub-fractions A and B were further analysed by GC-MS. Both samples were pale yellow-colored oils with a distinct odor. Constituents of sub-fractions A and B are listed in Table 3. Twelve compounds were identified in sub-fractions A and B. Sample A was characterized by high amounts of fatty acid methyl esters, namely: methyl palmitate, ethyl palmitate, methyl linoleate, methyl oleate, methyl stearate, and ethyl oleate. Sample B contained fatty acids (palmitic acid and oleic acid), fatty acid methyl esters (methyl linoleate and methyl oleate), ergosterol, ergosta-5,7,9(11),22-tetraen-3β-ol, ergost-5,8(14)-dien-3-ol, and γ-ergosterol.

Table 3: Chemical composition of lipids in sub-fractions A and B of P. giganteus.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>RT (min)</th>
<th>Percentage (%)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-fraction A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl palmitate</td>
<td>20.50</td>
<td>14.8</td>
<td>99</td>
</tr>
<tr>
<td>Ethyl palmitate</td>
<td>371.81</td>
<td>1.2</td>
<td>98</td>
</tr>
<tr>
<td>Methyl linoleate</td>
<td>23.70</td>
<td>19.8</td>
<td>99</td>
</tr>
<tr>
<td>Methyl oleate</td>
<td>23.80</td>
<td>39.3</td>
<td>99</td>
</tr>
<tr>
<td>Methyl stearate</td>
<td>24.26</td>
<td>3.3</td>
<td>99</td>
</tr>
<tr>
<td>Ethyl oleate</td>
<td>24.99</td>
<td>12.3</td>
<td>99</td>
</tr>
<tr>
<td>Sub-fraction B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl palmitate</td>
<td>20.49</td>
<td>0.2</td>
<td>95</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>21.38</td>
<td>14.4</td>
<td>99</td>
</tr>
<tr>
<td>Methyl linoleate</td>
<td>23.68</td>
<td>0.4</td>
<td>93</td>
</tr>
<tr>
<td>Methyl oleate</td>
<td>23.79</td>
<td>1.0</td>
<td>93</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>24.61</td>
<td>31.7</td>
<td>99</td>
</tr>
<tr>
<td>Ergosta-5,7,9(11),22-tetraen-3β-ol</td>
<td>39.83</td>
<td>2.2</td>
<td>90</td>
</tr>
<tr>
<td>Ergosterol</td>
<td>40.33</td>
<td>24.4</td>
<td>98</td>
</tr>
<tr>
<td>Ergost-5,8(14)-dien-3-ol</td>
<td>40.51</td>
<td>10.2</td>
<td>95</td>
</tr>
<tr>
<td>γ-Ergosterol</td>
<td>41.32</td>
<td>3.7</td>
<td>94</td>
</tr>
</tbody>
</table>

The methanol, ethyl acetate, and aqueous extracts were not toxic to 3T3 fibroblasts cells and the IC50 values were more than 2 mg/mL (Fig. 1). Meanwhile, cell viability (%) decreased steadily with increasing concentrations of sub-fractions A and B at levels up to 500 µg/mL. The IC50 value of sub-fraction A was 352 µg/mL and the R² value was 0.9609. For sub-fraction B, the IC50 was 362 µg/mL with the R² value recorded at 0.9552.

To our knowledge, this is the first report on the antifungal activity of the lipid components of P. giganteus. It has been reported that crude extracts of P. ostreatus and C. comatus inhibited the growth of C. albicans [6]. However, the MICs were much higher (up to 1 mg/mL) when compared with this study, which recorded an MIC of 100 µg/mL. The sub-fractions A and B were shown to contain several bioactive components. Since they are blends of fatty acids and fatty acid methyl esters, they do not act on specific targets in the fungal cells, and fungal resistance may be unlikely to occur. Furthermore, fatty acids and their methyl esters were reported to have fungicidal activity to C. albicans, C. krusei, C. tropicalis and C. parapsilosis [13]. The entities might play crucial roles in lipophilic or hydrophilic effects on the cell wall and membrane, hence affecting the distribution of the lipids in the cells [14]. Moreover, ergosterol present in the sample could disrupt the ergosterol biosynthesis pathway in the yeast, causing growth inhibition or cell death. This was further supported by a study of Irshad et al. [15], who reported that ergosterol-rich Cassia fistula oil significantly decreased the in vivo ergosterol content in the Candida cell wall.

In this study, the sub-fractions A and B were not cytotoxic to mouse fibroblasts at the concentrations tested (Fig. 1). Animal testing is becoming less popular and is gradually being replaced by in vitro methods for toxicity assessment of pharmaceutical products. In conclusion, P. giganteus lipids are promising natural products to be further explored as antifungal agents against Candida species.

Experimental

Mushroom: The fruiting bodies of Pleurotus giganteus (Berk) Karunarathna & K.D. Hyde were obtained from Nas Agro Farm, Selangor, Malaysia. A voucher specimen (KLUM 1227) was deposited in the Herbarium in the University of Malaya.

Chemicals: Fluconazole and amphotericin B were purchased from Sigma Co. (St. Louis, MO, USA). The stocks were prepared in dimethyl sulfoxide (DMSO) prior to bioassays. [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), was also obtained from Sigma. Methanol (MeOH), ethyl acetate (EtOAc), n-hexane and acetone were from Merck (Darmstadt, Germany).

Extracts preparation: The fresh fruiting bodies of P. giganteus were sliced, freeze-dried and ground to a fine powder (500 g). The mushroom powder was extracted with 80% MeOH to yield a MeOH extract (115 g, 23.0%). This (125 g) was further partitioned in EtOAc-H2O (100 mL: 100 mL) to give an EtOAc-soluble extract (6.96 g, 6.05%) and a H2O extract (74.2 g, 64.52%).

Fractionation of extract: The EtOAc extract (5.00 g) was further fractionated by CC over silica gel. The extract was eluted with n-hexane containing increasing concentrations of acetone to obtain 8 fractions (A to H) based on similarity of spots on TLC.
Cell culture: Mouse embryonic fibroblasts were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%, v/v, heat-inactivated fetal bovine serum (PAA), 100 U/mL penicillin and 100 µg/mL streptomycin. The cells were routinely passaged every 2-3 days and incubated at 37°C and 5%, v/v, CO₂ in a humidified atmosphere.

Cytotoxicity: The crude MeOH and fractionated EtOAc extracts were dissolved in DMSO (10 mg/mL) as stock solutions. The H₂O extract (10 mg/mL) was stock in sterilised distilled water. The cytotoxic effects of varying concentrations of MeOH, EtOAc and H₂O extracts, as well as the fractions A-H in DMSO to 3T3 fibroblast cells were tested by the established colorimetric MTT assay [16]. The absorbance was measured at 550 nm using a microplate reader. The IC₅₀ is the concentration of extract or fraction that reduced fibroblast cell growth by 50%.

Anti-yeast activity: Candida albicans WM1172, C. albicans ATCC90028, C. dubliniensis, C. glabrata CBS138, C. glabrata ATCC90030, C. krusei ATCC6258, C. pseudotropicalis, and C. tropicalis WM30 were used in this study. The yeast inhibition assay was performed according to the method of Macreadie et al. [17]. The yeast strains were grown in YEPD (1% yeast extract, 2% peptone, 2% glucose). If required, media were solidified by the addition of 1.5% agar. Yeast inocula (100 µL) with a starting cell density of 1 × 10⁶ cells/mL were added to each well of a 96-well plate (Orange Scientific, Braine-l’Alleud, Belgium). Mushroom extracts were then added as two-fold serial dilutions commencing with a 100 µg/mL concentration. Fluconazole (0.1 mM) and amphotericin B (1.0 mM) were used as positive controls. A growth control DMSO solvent alone was also included. The microplate was incubated in a microplate shaker at 35°C. After 2 h and 4 h incubation, the A₅₉₅ was recorded using a microplate reader (Sunrise²⁸⁶, Tecan, Austria). Each sample was assayed in triplicate. The lowest concentration of extracts that inhibited growth of Candida spp. is the minimum inhibitory concentration (MIC).

Gas chromatography-mass spectrometry (GCMS): GCMS analysis was performed on sub-fractions A and B using Network Gas Chromatography system (Agilent Technologies 6890N) equipped with an Inert Mass Selective Detector (Agilent Technologies 5975) (70eV direct inlet) on a HP-5ms (5% phenyl methyl siloxane) capillary column (30 m × 0.25 µm × 0.25 µm) initially set at 150°C, then increased at 5°C per min to 300°C and held for 10 min. Helium was used as carrier gas at a flow rate of 1 mL per min. The total ion chromatogram obtained was autointegrated by chemstation and the constituents were identified by comparison with the accompanying mass-spectra database (Wiley 9th edition with NIST 11 Mass Spectral Library, USA) wherever possible.

Acknowledgments – This research is supported by UM High Impact Research Grant UM-MOHE UMC/625/1HIR/MOHE/ F00002-21001 from the Ministry of Higher Education Malaysia. The authors thank the University of Malaya for Postgraduate Research Grant (PV007/2012A) and MRC 66-02-03-0074. We thank Prof. Andrew T. Smith, Dean of School of Applied Science, RMIT University for partial funding for the joint research.

References

Rosmarinic Acid Interaction with Planktonic and Biofilm Staphylococcus aureus
Lívia Slobodníková, Silvia Fialová, Helena Hupková and Daniel Grančík

New Butenolide and Pentenolide from Dysidea cinerea
Phan Van Kiem, Nguyen Xuan Nhien, Ngo Van Quang, Chau Van Minh, Nguyen Hoai Nam, Nguyen Thi Cuc, Hoang Le Tuan Anh, Bui HuuT'ai, Pham Hai Yen, Nguyen Xuan Cuong, Nguyen Phuong Thao, Nguyen Thi Hoai, Nan Young Kim, Seon Ju Park and Kim Seung Hyun

A New Cyclopeptide from Endophytic Streptomyces sp. YIM 64018
Xueqiong Yang, Yabin Yang, Tianfeng Peng, Fangfang Yang, Hao Zhou, Lixing Zhao, Lihua Xu and Zhongtao Ding

Involvement of Trypsin-Digested Silk Peptides in the Induction of RAW264.7 Macrophage Activation
Kyoung-Ho Pyo, Min-Ki Kim, Kwang-Soon Shin, Hyang Sook Chun and Eun-Hee Shin

Low-Volatile Lipophilic Compounds in Needles, Defoliated Twigs, and Outer Bark of Pinus thunbergii
Alexander V. Shpatov, Sergey A. Popov, Olga I. Salnikova, Ekaterina A. Khokhrina, Emma N. Shmidt and Byung Hun Um

Lipid Constituents of the Edible Mushroom, Pleurotus giganteus Demonstrate Anti-Candida Activity
Chia-Wei Phan, Guan-Serm Lee, Ian G. Macreadie, Sri Nurestri Abd Malek, David Pamela and Vikineswary Sabaratnam

Effect of Trehalose Addition on Volatiles Responsible for Strawberry Aroma
Mirela Kopjar, Janez Hribar, Marjan Simčič, Emil Zlatić, Tomaž Požrl and Vlasta Piližota

Pogostemon hirsutus Oil, Rich in Abietane Diterpenes
Ramar Murugan, Gopal Rao Mallavarapu, Veerappan Sudha and Pemaiah Brindha

Combined Analysis of the Root Bark Oil of Cleistopholis glauca by Chromatographic and Spectroscopic Techniques
Zana A. Ouattara, Jean Brice Boti, Coffy Antoine Ahibo, Félix Tomi, Joseph Casanova and Ange Bighelli

Bioactivities and Compositional Analyses of Cinnamomum Essential Oils from Nepal: C. camphora, C. tamala, and C. glaucescens
Prabodh Satyal, Prajwal Paudel, Ambika Paudel, Noura S. Dosoky, Kiran Kumar Pokharel, and William N. Setzer

Essential Oil Characterization of Two Azorean Cryptomeria japonica Populations and Their Biological Evaluations
Cristina Moteiro, Teresa Esteves, Luís Ramalho, Rosario Rojas, Sandra Alvarez, Susana Zacchio and Helena Bragança

Antioxidant, Antiproliferative and Antimicrobial Activities of the Volatile Oil from the Wild Pepper Piper capense Used in Cameroon as a Culinary Spice

Review/Account

Boldine and Related Aporphines: From Antioxidant to Antiproliferative Properties
Darina Muthna, Jana Cmielova, Pavel Tomskik and Martina Rezacova

New Therapeutic Potentials of Milk Thistle (Silybum marianum)
Nataša Milić, Nataša Milošević, Ljiljana Suvađić, Marija Žarkov and Ludovico Abenavoli

Biomedical Properties of Edible Seaweed in Cancer Therapy and Chemoprevention Trials: A Review
Farideh Namvar, Paridah Md. Tahir, Rosfarizan Mohamad, Mahnaz Mahdavi, Parvin Abedi, Tahereh Fathi Najafi, Heshu Sulaiman Rahman and Mohammad Jawaid

Methods for Extraction and Determination of Phenolic Acids in Medicinal Plants: A Review
Agnieszka Arceusz, Marek Wesolowski and Paweł Konieczynski
Natural Product Communications
2013
Volume 8, Number 12

Contents

<table>
<thead>
<tr>
<th>Original Paper</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Humulenes from Hyptis incana (Labiatae)</td>
<td>1665</td>
</tr>
<tr>
<td>Mitsuru Satoh, Yoshio Satoh, Yasuhiro Anzai, Daisuke Ajsawa, Keiichi Matsuizaki, Mitsuaki Makino and Yasuo Fujimoto</td>
<td></td>
</tr>
<tr>
<td>Inhibitory Effects against Pasture Weeds in Brazilian Amazonia of Natural Products from the Marine Brown Alga Dictyota menstrualis</td>
<td>1669</td>
</tr>
<tr>
<td>Rainiormar Raimundo Fonseca, Antonio Pedro Silva Souza Filho, Roberto Campos Villaça and Valéria Laneuville Teixeira</td>
<td></td>
</tr>
<tr>
<td>Isolation of the Plant Hormone (+)-Abscisic acid as an Antimycobacterial Constituent of the Medicinal Plant Endophyte Nigrospora sp.*</td>
<td>1673</td>
</tr>
<tr>
<td>Trevor N. Clark, Katelyn Elsworth, Haoxin Li, John A. Johnson and Christopher A. Gray</td>
<td></td>
</tr>
<tr>
<td>New Cembranoid Diterpene from the South China Sea Soft Coral Sarcophyton sp.*</td>
<td>1675</td>
</tr>
<tr>
<td>Fei Cao, Jing Zhou, Kai-Xia Xu, Meng-Qi Zhang and Chang-Yun Wang</td>
<td></td>
</tr>
<tr>
<td>Crotofolane Diterpenoids from Croton caracasanus</td>
<td>1679</td>
</tr>
<tr>
<td>Katiuska Chávez, Reinaldo S. Compagnone, Ricarda Riina, Alexander Briceño, Teresa González, Emilio Squitieri, Carlos Landaeta, Humberto Socciú and Allirica I. Suárez</td>
<td></td>
</tr>
<tr>
<td>Development and Validation of a Modified Ultrasound-Assisted Extraction Method and a HPLC Method for the Quantitative Determination of Two Triterpenic Acids in Hedyotis diffusa</td>
<td>1683</td>
</tr>
<tr>
<td>Yu-Chiao Yang, Ming-Chi Wei, Hsi-Fen Chia and Ting-Chia Huang</td>
<td></td>
</tr>
<tr>
<td>New Triterpenoid Saponins from the Roots of Saponaria officinalis</td>
<td>1687</td>
</tr>
<tr>
<td>Barbara Moniuszko-Szajwaj, Łukasz Pecio, Mariusz Kowalczyk, Ana M. Simonet, Francisco A. Maicas, Małgorzata Szumacher-Strabel, Adam Cieślak, Wiesław Oleszek and Anna Stochołm</td>
<td></td>
</tr>
<tr>
<td>Minor Triterpenoid Saponins from Underground Parts of Lysimachia thrysiflora; Structure elucidation, LC-ESI-MS/MS Quantification, and Biological Activity*</td>
<td>1701</td>
</tr>
<tr>
<td>Irma Podolak, Paweł Zmudzki, Paulina Koczurkiewicz, Marta Michalik, Paweł Zajdel and Agnieszka Galanty</td>
<td></td>
</tr>
<tr>
<td>Variation of Saponin Contents and Physiological Status in Quillaja saponaria Under Different Environmental Conditions*</td>
<td>1705</td>
</tr>
<tr>
<td>Angélica Grandón S, Miguel Espinosa B, Darcy Rios L, Manuel Sánchez O, Katia Sáez C, Víctor Hernández S. and José Becerra A</td>
<td></td>
</tr>
<tr>
<td>New Access to 7,17-seco C19-Diterpenoid Alkaloids via Vacuum Pyrolysis of N-Deethyl-8-acetyl Derivatives*</td>
<td>1711</td>
</tr>
<tr>
<td>Ling Wang, Qi-Feng Chen and Feng-Peng Wang</td>
<td></td>
</tr>
<tr>
<td>Alkaloids from Boophone haemanthoides (Amaryllidaceae)</td>
<td>1713</td>
</tr>
<tr>
<td>Jerald J. Nair, Lucie Kárová, Miroslav Strnad, Jaume Bastida and Johannes van Staden</td>
<td></td>
</tr>
<tr>
<td>Supinidine Viridiflorates from the Roots of Chromolaena pulchella</td>
<td>1717</td>
</tr>
<tr>
<td>N-Containing Metabolites from the Marine Sponge Agelas clathrodes</td>
<td>1721</td>
</tr>
<tr>
<td>Fan Yang, Rui-Hua Ji, Jiang Li, Jian-Hong Gan and Hou-Wen Lin</td>
<td></td>
</tr>
<tr>
<td>Two New Compounds and Anti-complementary Constituents from Amomum tsao-ko</td>
<td>1725</td>
</tr>
<tr>
<td>Jiahong Jin, Zhihong Cheng and Daofeng Chen</td>
<td></td>
</tr>
<tr>
<td>Antiangiogenic Activity of Flavonoids from Melia azedarach</td>
<td>1729</td>
</tr>
<tr>
<td>Shigenori Kumashita, Satomi Kubota, Haruna Yamamoto, Naoki Okamura, Yasumasa Sugiyama, Hirokazu Kobayashi, Motoyasu Nakanishi and Toshiro Ohta</td>
<td></td>
</tr>
<tr>
<td>Application of Mixture Analysis to Crude Materials from Natural Resources (IV) by Direct Analysis in Real Time Mass Spectrometry (II)</td>
<td>1733</td>
</tr>
<tr>
<td>Erikó Fukuda, Yoshihiro Uesawa, Masaki Baba and Yoshihito Okada</td>
<td></td>
</tr>
<tr>
<td>Comparison of Total Phenolic Content, Scavenging Activity and HPLC-ESI-MS/MS Profiles of Both Young and Mature Leaves and Stems of Andrographis paniculata</td>
<td>1737</td>
</tr>
<tr>
<td>Lee Suan Chua, Ken Choy Yap and Indu Bala Jaganath</td>
<td></td>
</tr>
<tr>
<td>Xanthones from aerial parts of Hypericum laricifolium Juss.*</td>
<td>1741</td>
</tr>
<tr>
<td>Irama Ramirez-González, Juan Manuel Amaro-Luis and Ali Bahsas</td>
<td></td>
</tr>
<tr>
<td>A New Xanthone from the Pericarp of Garcinia mangostana</td>
<td>1745</td>
</tr>
<tr>
<td>Manqin Fu, Samuel X. Qiu, Yujuan Xu, Jijun Wu, Yulong Chen, Yuanshan Yu and Gengsheng Xiao</td>
<td></td>
</tr>
<tr>
<td>Isolation of a Phomoxanthone A Derivative, a New Metabolite of Tetrahydroxanthone, from a Phomopsis sp. Isolated from the Mangrove, Rhizophora mucronata</td>
<td>1749</td>
</tr>
<tr>
<td>Yoshitomo Shiono, Takeshi Sasaki, Fumiake Shibuya, Yukito Yashuda, Takuya Koseki and Unang Supratman</td>
<td></td>
</tr>
<tr>
<td>Anti-allergic Inflammatory Effects of Cyanogenic and Phenolic Glycosides from the Seed of Prunus persica</td>
<td>1753</td>
</tr>
<tr>
<td>Geun Jin Kim, Hyun Gyu Choi, Ji Hyang Kim, Sang Hyun Kim, Jeong Ah Kim and Seung Ho Lee</td>
<td></td>
</tr>
<tr>
<td>Isolation, Synthesis and Biological Evaluation of Phenylpropanoids from the Rhizomes of Alpania galanga</td>
<td>1757</td>
</tr>
<tr>
<td>Sunit S Chourasia, Eppakayala Sreedhar, K. Suresh Babu, Nagula Shankarniah, V. Lakshma Nayak, S. Ramakrishna, S. Sravani and M.V. Basaveswara Rao</td>
<td></td>
</tr>
</tbody>
</table>

Continued inside backcover