Short communication

All serotypes of dengue virus induce HLA-A2 major histocompatibility complex class I promoter activity in human liver cells

Shatrah Othmana, c, Noorsaadah A. Rahmanb, c, Rohana Yusofa, c, +

a Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
c Drug Design and Development Research Group, University of Malaya, 50603 Kuala Lumpur, Malaysia

1. Introduction

Dengue virus (DV) belongs to the \textit{Flaviviridae} family and comprises four antigenically distinct serotypes, DV1 to DV4, which are transmitted to humans primarily by the mosquito bites of \textit{Aedes aegypti}.1 Dengue diseases affect over 100 million people worldwide each year, with more than 2.5 billion people at risk for endemic transmission.1 While the past decade has witnessed important advances in DV pathology, epidemiology, immunology, structural biology and pharmacology, the pathogenesis of DV infection remains a challenging puzzle. Elucidation of the immunological responses to flaviviruses has clearly shown a complex interplay of viral and host factors, with both innate and adaptive elements playing important roles in reducing viremia and viral clearance.2

To evade the host’s immune response, viruses have evolved several mechanisms that block the major histocompatibility complex (MHC) class I antigen presentation pathway.3 Many viruses escape this by down-regulating surface expression of the MHC class I molecules. In contrast, flaviviruses such as West Nile Virus (WNV) and hepatitis C virus (HCV) have been reported to increase the MHC class I antigen presentation.3 This led us to investigate the effect of dengue virus on the MHC class I gene, in particular the HLA-A2 gene, in dengue-infected human cells.

2. Materials and Methods

2.1. Construction of Luciferase Reporter plasmids

Genomic DNA was isolated from HepG2 cells using DNA Extraction Kit (Qiagen, Germany) according to manufacturer’s instruction. A DNA fragment of the HLA-A2 promoter was amplified using primer set HLA420F (5’-CCCCCCCCCTCGAGGGACAGAGAT-3’) and HLA420R (5’-CTCTTAAAGCTTCTCGGGCTTGT-3’) to generate a 420 bp