Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study

N Ibrahim1,2 A Parsa1 B Hassan1 P van der Stelt1 I H A Aartman3 P Namblar2

1Department of General and Specialized Dentistry, Section of Oral and Maxillofacial Radiology, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
2Department of Diagnostic and Integrated Dental Practice, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
3Department of Social Dentistry and Behavioural Sciences, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands

DOI: http://dx.doi.org/10.1259/dmfr.20130329
Received: September 06, 2013
Accepted: November 06, 2013
Published Online: January 08, 2014

Abstract

The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, left, right, anterior and posterior) using five different FOVs of two CBCT systems (NewTom™ 5G; QRI Verona, Verona, Italy and Accuitomo 170; Morita, Kyoto, Japan). Image analysis software (CTAn software v. 1.1; SkyScan, Kontich, Belgium) was used to assess the trabecular bone microstructural parameters (thickness, Tb.Th; spacing, Tb.Sp; number, Tb.N; bone volume density, BV/TV). All measurements were taken twice by one trained observer. Tb.Th, Tb.Sp and Tb.N varied significantly across different FOVs in the NewTom 5G ($p < 0.001$) and the Accuitomo 170 ($p < 0.001$). For location, a significant difference was observed only when measuring BV/TV ($p = 0.03$) using the NewTom 5G. The trabecular bone microstructural measurements obtained from CBCT systems are influenced by the size of FOVs. Not all trabecular bone parameters measured using different CBCT systems are affected when varying the object location within the FOVs.

Keywords: Keywords: CONE BEAM CT; TRABECULAR BONE; DIAGNOSTIC IMAGING; MANDIBLE