Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates

A. M. Gumel · M. S. M. Annuar · Y. Chisti

Published online: 18 September 2012
© Springer Science+Business Media, LLC 2012

Abstract Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters that can potentially replace certain plastics derived from petroleum. PHAs can be produced using a combination of renewable feedstocks and biological methods. Native and recombinant microorganisms have been generally used for making PHAs via fermentation processes. As much as 90 % of the microbial dry mass may accumulate as PHAs. A range of PHAs has been produced using fermentation methods, including copolymers and block copolymers. Alternative production schemes based on genetically modified plants are becoming established and may become the preferred route for producing certain PHAs. Production in plants is likely to be inexpensive compared to production by fermentation, but it does not appear to be as versatile as microbial synthesis in terms of the range of products that may be generated. Cell-free enzymatic production of PHAs in vitro is receiving increasing attention and may become the preferred route to some specialty products. This review discusses the recent advances in production of polyhydroxyalkanoates by the various methods. Methods of recovering the polymer from microbial biomass are reviewed. Established and emerging applications of PHAs are discussed.

Keywords Biopolymers · Bioplastics · Polyhydroxyalkanoates · Polymerization · Applications

Abbreviations

ATRP Atom transfer radical polymerization
CALB Candida antarctica lipase B
CSTR Continuous stirred tank reactor
DO Dissolved oxygen
DNA Deoxyribonucleic acid
DW Dry weight
cPHB Complexed poly-(R)-3-hydroxybutyrate
EDTA Ethylenediaminetetraacetic acid
FNL Fervidobacterium nodosum lipase (FNL)
HACoA HydroxyalkanoylCoA
HB Hydroxybutyrate
3HB 3-Hydroxybutyrate, or 3-hydroxybutyric acid
4-HB 4-Hydroxybutyrate
HEC Hydroxyethyl cellulose
HEMA 2-Hydroxyethyl methacrylate
HHx Hydroxyhexanoate
HOPG Highly oriented pyrolytic graphite
HV Hydroxyvelarate
mcl-PHA Medium-chain-length PHA
NAD Nicotinamide adenine dinucleotide
NADH Reduced form of nicotinamide adenine dinucleotide
P3HB3HV Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PANi Polyaniline
PCL ε-Caprolactone, or polycaprolactone
PDH Pyruvate dehydrogenase
PDL ω-Pentadecanolate
PEG Polyethylene glycol
PEO Polyethylene oxide
PHA Polyhydroxyalkanoates
PHB Polyhydroxybutyric acid
PHBHHx Poly-3-hydroxybutyrate-co-3-hydroxyhexanoate

A. M. Gumel · M. S. M. Annuar
Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: suffian_annuar@um.edu.my

Y. Chisti
School of Engineering, PN 456, Massey University, Private Bag 11 222, Palmerston North, New Zealand

Springer