Green Maintenance for historic masonry buildings: an option appraisal approach

Brit Anak Kayan
Department of Building Surveying, Faculty of Built Environment, University of Malaya, Kuala Lumpur, Malaysia, and
Alan M. Forster and Phillip F.G. Banfill
School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK

Abstract

Purpose – Sustainability is well understood to encapsulate economic, environmental and societal parameters. The efficiency of maintenance interventions for historic buildings is no exception and also conforms to these broad factors. Recently, environmental considerations for masonry repair have become increasingly important and this work supports this growing area. The purpose of this paper is to give insight on how an option appraisal approach of “Green Maintenance” modelling for historic masonry buildings repair practically determine and ultimately substantiate the decision-making process using a calculation procedures of life cycle assessment, within delineated boundaries.

Design/methodology/approach – Calculation procedures of the model enables an assessment of embodied carbon that is expended from different stone masonry wall repair techniques and scenarios for historic masonry buildings during the maintenance phase.

Findings – It recognises the importance roles Green Maintenance model can play in reducing carbon emissions and underpins rational decision making for repair selection.

Practical implications – It must be emphasised that the calculation procedures presented here, is not confined to historic masonry buildings and can be applied to any repair types and building form. The decisions made as a result of the utilisation of this model practically support environmentally focused conservation decisions.

Social implications – The implementation of the model highlights the efficacy of repairs that may be adopted.

Originality/value – The paper is a rigorous application and testing of the Green Maintenance model. The model relays the “true” carbon cost of repairs contextualised within the longevity of the materials and its embodied carbon that consequently allows rational appraisal of repair and maintenance options.

Keywords Life cycle assessment, Embodied carbon, Green Maintenance, Calculation procedures, Environmental maintenance impact (EMI), Historic masonry buildings

Paper type Research paper

1. Introduction

Maintenance of buildings is crucial for ensuring that the financial, economic and societal capital invested in the fabric is retained. “Green Maintenance” has the potential to refocus the traditional view of the repair of building, towards sustainability (Forster et al., 2011; Kayan, 2013, 2015) and therefore go some way to satisfy legally binding sustainability targets. Bell (1997) and British Standards Institution (2008) also expounded that this has been embedded in the principal building conservation...
That said, protection of historic fabric through maintenance is not only undertaken from a cultural perspective, but also from an economic viewpoint that is reflected in the fact that 50 per cent of Europe’s national wealth is encapsulated within its existing built environment (Balaras et al., 2005; Forster and Kayan, 2009; Forster et al., 2013). Premature deterioration associated with lack of regular maintenance can extensively devalue these existing assets. Specifically, with regards to the UK, as a proportion of Gross Domestic Product, maintenance accounts for nearly half of the total expenditure on construction nationally (Balaras et al., 2005). Moreover, the UK’s built environment contains 450,000 listed and 10.6 million pre-1944 buildings (Maintain our Heritage, 2004). In 2002, the financial value of repair works to the existing built environment was calculated at £30 billion (in 1995 prices), a figure that increased to £36 billion in 2002 (at 2002 prices) (Department of Trade and Industry, 2002; Arup Research and Development (On behalf of Maintain our Heritage), 2003). Remarkably, of the large and expanding market in repair works to the built environment, masonry contributes a significant cost. In Glasgow alone, the Scottish Stone Liaison Group (2006) (UK) have estimated that the cost of masonry repairs required over a 20-year period as approximately £600 million (at 2010 prices). Apparently, other major cities with a tradition of masonry construction in Scotland (such as Edinburgh) may also need similar levels of investment (Kayan, 2013, 2015). In the future, however, recognition of the contribution of maintenance should be expanded, not only to cover the protection of the historic fabric of buildings and economic costs of existing built environment but also to address the perspective of environmental impact.

Hammond and Jones (2008a) state that the “UK construction industry consumes over 420 Mt of materials, 8 Mt of oil and releases over 29 Mt of carbon dioxide annually, including a significant quantity of new materials disposed of as waste”. For example, in order to meet global targets, the Scottish Government (2009) has outlined their commitment to reduce greenhouse gas emissions in Scotland by 80 per cent (relative to 1990 levels) in 2050. Significantly, a substantial proportion of these carbon emissions have been attributed to the operations as well as the maintenance and repair of existing buildings, i.e. including historic masonry buildings.

Today, the cost implications of repairs must be considered within the context of the associated carbon expenditure. These measures are increasing in prevalence and form a part of carbon reduction strategies. This work practically applies a mathematical modelling method developed by Forster et al. (2011), and reflects the growing importance of the meaningful determination of the carbon cost associated with repair interventions. Forster et al.’s (2011) work into Green Maintenance was developed from mid stage doctoral research undertaken by Kayan (2013). This was further developed and the work was published in 2013. This current paper is a logical and meaningful continuation of Kayan’s (2013) doctoral research and practically applies the established theory.

For the purpose of historic maintenance records data collection for this paper, the selected samples of historic masonry buildings were determined to be owned and managed by collaborative partners (Historic Scotland, National Trust for Scotland) and The City of Edinburgh Council (CEC). These sample buildings were selected from different localities in Scotland, including the central and west, the Scottish Borders, Glasgow, Clyde and Ayrshire, Edinburgh and the Lothians, Fife, and Dumfries and Galloway. These all selected sample were varies in type including tenements, public
and private houses, townhouses, guesthouses and, etc. had large areas of exposed stone masonry wall elements. Additionally, the stone masonry wall elements of each selected sample building were different in terms of type of wall construction and stone used. They had different localities (different local climate) and dissimilar weathering effects (rate of deterioration) in their stone masonry. Apparently, this influenced the longevity of the repair techniques undertaken (the faster the rate of deterioration, the more frequently repair was required) and the total wall area repaired (the larger the deteriorated surface of a wall, the higher total area repaired) within selected maintenance periods (Kayan, 2013).

The data utilised to test the model was derived from evaluation of historic maintenance records within several significant portfolio holders. These include, Historic Scotland (HS); National Trust for Scotland (NTS), and CEC. These records were primarily composed of repair type, date of executing the works, cost, and specification information, etc. The main requirements for the effective utilisation of the model were details of specification and sourcing of the materials; the longevity and duration between repeat interventions and the extent of the works undertaken.

2. Maintenance of historic masonry buildings: setting the evaluation parameters and methods

The Green Maintenance model aims to better inform the evaluation of the long-term maintenance requirements of historic masonry buildings, appropriately directing decisions on interventions. This requires a clear understanding of the cumulative effect of routine maintenance operations, and their environmental impact (Forster et al., 2011). Conceptually, the service condition and expended embodied carbon (CO₂ emission) for each maintenance intervention (in y-axis) of the model are illustrated in Figure 1. On the other hand, each maintenance intervention (repair) is characterised by its longevity (l) (denoted by the saw-tooth profile) and embodied carbon (Ce) (denoted by the stepped dotted lines). The model distinguishes delineation between “Brown” and “Green” Maintenance, namely, those repairs of high and low carbon impact, respectively. Representatively, a “Brown” Maintenance (steep saw-tooth gradient) denotes a repair

![Figure 1](https://via.placeholder.com/150)

Source: Forster et al. (2011)
with short life expectancy, such as pinning and consolidation, which can extend the service condition by 20 years. Comparatively, a “Green” Maintenance (shallow saw-tooth gradient) equates to a durable long-lasting intervention such as masonry replacement lasting at least 100 years.

The cumulative effect of “Brown” Maintenance increases the total embodied carbon expended far more quickly than “Green” Maintenance and does not attain required longevity. Practically, Brown Maintenance interventions are associated with many factors but prevalent issues may include, inadequately specified, high carbon materials, that are poorly executed and that do not attain functional longevity. Conversely, Green Maintenance could be typified by a durable low carbon repair that suitably achieves the required broader set of design requirements. As emphasised by Forster et al. (2013), however, the complexity of lifespan and combinations of repair types suggest a whole life cycle approach is necessary in determining “Brown” from Green Maintenance.

Figure 1 illustrates the implications of undertaking maintenance interventions on the service condition of masonry over time. The downward sloping lines signify the steady decline in condition over the life of the masonry repairs. Each maintenance intervention brings the area of masonry back to optimal service condition (in this case, optimal service condition of masonry is defined as when it attained good condition and able to fulfil its elemental functions). It then deteriorates at a rate that depends on the repair type. Intervention is assumed to occur when the minimum acceptable condition is reached, and the saw-tooth profile results from successive interventions, each extending the life of the masonry.

Principally, the more frequent the maintenance intervention, the higher the embodied carbon expended (more CO₂ emissions). Generally, an almost zero impact repair (lowest CO₂ emissions) might be better even needed several times (example of repointing which highly influenced by minimal usage of materials on each intervention). It must be noted that, however, it is commonly frequently required for overall surface of wall to be repointed within maintenance phase (large wall areas will implicates consistently high overall total Environmental Maintenance Impact (EMI) within the life cycle of buildings).

Generally, in the case of historic masonry building repair, various mechanisms may exist to reduce the total CO₂ emitted (sometime referred as greenhouse gas (GHG) emissions); local sourcing of masonry repair materials, using regional companies to undertake the masonry repair work and selecting low embodied carbon materials. To attain low embodied carbon expenditure for stone masonry wall repair within specified arbitrary maintenance period (such as in 100 years), preference is given to natural replacement (higher longevity, lower embodied carbon expenditure and less CO₂ emissions) as opposed to plastic repair (lower longevity, high embodied carbon expenditure and more CO₂ emissions). Due to complexity of repair longevity, using either single or combined repair techniques in different repair scenarios for stone masonry wall repair within the selected boundary of life cycle assessment (LCA) and the maintenance profile period, therefore, an appropriate approach is essentially required in determining the impact in terms of overall EMI (CO₂ emissions).

It must be emphasise that every repair type has differences in term of durability (unpredictable of estimated service life (ESL)) and longevity of repair. Therefore, it is not necessary for undertaking masonry repair only when reach the same level of optimal service condition. The time between interventions is influenced by many variables, including material durability, degree of exposure, building detailing, and quality of repair and specification. Undertaking repairs at frequent intervals increases
the risk of mechanical damage to the masonry associated with scaffolding. Less regular masonry repair can reduce the risk of this damage and also aligns with the philosophical principle of least intervention.

Principally, higher embodied carbon (more CO₂ emissions) is associated with more frequent maintenance interventions. Clearly, “lock up” of embodied carbon in stone masonry walling is a function of the longevity of the selected interventions. It is therefore desirable to attain low carbon, high durability repairs. For example, natural stone replacement can be considered as being “greener” in terms of embodied carbon compared to plastic repair due to its relative longevity. Longevity of the individual repair is therefore inversely proportional to the number (n) of repeat interventions required over a notional timeframe. In reality n is influenced by factors such as the materials specification; the quality of the executed works; the design and detailing of the structure; the exposure levels that the repair is exposed to and climatic conditions (Forster and Carter, 2011). In addition, there is leading professional body championing life cycle data for historic fabric repair such as Royal Institution of Chartered Surveyor (RICS). It is highly recognised that RICS promotes sustainable development in property and construction sectors by advocating environmental assessment, i.e. through low carbon construction and materials. It must be noted that, life cycle data for the different types of repairs materials can be derived from various authoritative sources. For the purpose of this paper, life cycle data for repair materials for stone masonry wall are mainly derived based on RICS Building Cost Information System (BCIS) (2006).

Many masonry repair techniques are available to those entrusted with the sensitive and appropriate maintenance of historic structures. Whilst the permutations of the technical approaches are numerous four major repair types are most prevalent. These are repointing of mortar joints, plastic repair of deteriorating masonry faces, replacing natural stone; and pinning and consolidation of delaminating masonry faces (Forster, 2010b; Ashurst and Ashurst, 1988). This view is shared by Torney et al. (2014, p. 359) indicating that “A number of repair options may be considered in cases of masonry deterioration, including; natural stone replacement (indenting), consolidation of existing masonry, or ‘plastic’ repair with mortars. Each of these repair approaches brings with it a number of benefits and drawbacks relating to both technical and philosophical aspects of masonry conservation”. It must be emphasised that other techniques are commonly utilised by practitioners but they are outside the scope of this research.

The four repair types utilised for this study could be viewed in terms of relative levels of intrusion to the original fabric. For example, repointing deteriorated mortar joints would have a limited effect on adjacent masonry. Conversely, the removal of deteriorated natural stone and replacement with a new masonry unit logically requires the removal of greater quantities of original fabric (Hill, 1995). The environmental impact of these repair types also depend upon various factors.

Repeated repointing is synonymous with the removal of loose and friable mortar from the masonry joint. The prepared joint is then filled with a mortar which is principally composed of a binder (lime) and aggregate (well-graded sand). For repeated repointing repair scenario, lime-based mortar was encouraged as it lets the wall breathe. In this repair scenario, the decayed mortar from the face of the stone masonry wall can then be cut by raking out to reach the good mortar that remains deep in the wall (two or three times the thickness of the original mortar joints on the surface of the wall). Commonly, the repair depth should be cleaned out to a minimum depth of 25 mm (38-50 mm for wide joints, such as those in a rubble wall, if necessary).
Historically, repeated repointing intervention is commonly reapplied every 25 years (five times of intervention in a 100 selected specified periods) (Kayan, 2013).

Repeated plastic repair is a technique used to reface deteriorated masonry. The term “plastic” refers to the plasticity or workability of the fresh mortar rather than a polymeric material. The mortar adopted for these surface repairs can vary greatly but as with repointing mortars are principally composed of a binder and an aggregate. Under this repair scenario, the decayed surface of the stone masonry wall was assumed to be cutback to a point at which a sound substrate was reached and lime-based mortar was used to resurface the stone. Then, the resurfacing of the stone used lime-based mortar (with aggregates) materials for a 1 m² masonry wall plastic repair with a minimum of 3-12 mm depth (depending upon the thickness of the joints) of undercut or cutback, with approximately 9 mm thick layers (base coats) and 6 mm finishes. For this repair scenario, a minimum depth of 40 mm were commonly undercut or cutback with an approximately 9 mm thick layer (base coats) and 4 mm finish (www.lime-mortars.co.uk/calculators/plaster) for multi-layer patch. Normally, the intervention was reapplied every thirty years (3.33 times in the 100-year study period) (Kayan, 2013).

Natural stone replacement is associated with partial or full integration of new stone masonry units, whether ashlars (squared cut blocks) or rubble (irregular shaped masonry). These units are built into the pockets that are formed by removing deteriorated stone. In the case of stone masonry wall, natural stone replacement was assumed to require the cutting back or indenting of approximately 100 mm (0.1 m) or 0.10 m³ of volume (1 m × 1 m × 0.1 m = 0.10 m³) of the defective material in natural stone. This cutting back or indenting processes was then followed by building in a new section of stone with the approximate dimension of 1 m × 1 m × 0.1 m of respective length (L) × height (H) × width (W). For this paper, the life expectancy was taken to be a hundred years and all of the replacement stone’s EMI was attributed to the study period (only one intervention in a hundred years selected arbitrary periods) (Kayan, 2013).

Pinning and consolidation, followed by natural stone replacement of natural stone is normally only required to those stones that are face bedded (hence perpendicular to the natural sedimentary deposited layers). The technique requires drilling holes through the debonded layers and connecting then with stainless steel or nylon dowels that are subsequently grouted, fixing them in position (Forster, 2010a, b; Fielden, 1994). Generally, pinning and consolidation, followed by natural stone replacement repair scenarios for the stone masonry wall were assumed to require high-grade threaded stainless steel dowels, which should ensure the survival of the historic fabric of the stone masonry wall for an initial 20-year period. In the case of this paper, high-grade threaded stainless steel dowels (grade 304), as specified by Institute of Stainless Steel Forum, that were 100 mm long and 6 mm diameter, were used and inserted at an approximate minimum of 100 mm spacing or one hundred pieces in 1 m² stone masonry wall with an average weight of 46 g per piece (www.valbruna.co.uk/products/reval/dowel-bar-details). Historically, after a 20-year period the repair may fail and require further intervention in the form of replacement of stone. As previously mentioned, this process requires the “cutting out” of the defective masonry to a depth of approximately 100 mm (0.1 m³) and the building in of a new section of stone. For this paper, the replacement stone will last beyond the 100 years and so only 0.8 of its EMI was attributed to the study period (Kayan, 2013).

It must be emphasised that certain combinations of stone masonry wall repair are more common than others. For example, pinning and consolidation would be done only
once and followed by stone replacement, while a plastic repair is followed by stone replacement within a selected arbitrary period. By contrast, it would be highly unusual to pin and consolidate and then undertake a plastic repair within the same period (Forster et al., 2011; Kayan, 2013).

The effective determination of cumulative carbon associated with any type of repair and its underlying sourcing to site are fundamental components of the model. Twinned with this is the durability or service life prediction for the repairs and the number of expected repeat interventions within a given timeframe. Collectively, these form the basis of the EMI. For the purpose of this paper, testing on the Green Maintenance model was undertaken by generating of EMI expended with either a single or combination of stone masonry wall repair techniques in different repair scenarios only, within selected maintenance profiles (in this case, over a 100 years). If we can evaluate the efficacy of stone masonry wall repair in terms of its embodied carbon expenditure (CO\textsubscript{2} emissions), it could then be tailored to suit the EMI aspects rather than the longevity of repair alone. It must be noted that the scope of LCA in this paper was defined by taking into account the EMI as the parameter in comparing embodied carbon expenditure (CO\textsubscript{2} emissions) from stone masonry wall repair (Kayan, 2013).

In practice, however, LCA appears to be problematic as it commonly has many complications. Hammond and Jones (2008a) suggest that there are varies differences in LCA calculations including boundary conditions restriction and general incorrect assumptions. These differences carry a natural level of variation and methodological differences and relevant parameters. Previously, a significant number of studies have been conducted by researchers and organisations in order to identify variations of LCA. Ding (2004), as cited by Dixit et al. (2010), asserts that research studies have been undertaken that identify parameters responsible for variations in LCA. It must be emphasised that, Dixit et al. (2010) has also revealed that there is ten common parameters (system boundaries, analysis methods, geographic location, primary and delivered energy, age of data, completeness of data, manufacturing technology, feedstock energy consideration and temporal representation) that commonly influence the quality of embodied energy results, which could make differences on CO\textsubscript{2} emissions now or in the future. But, it must be noted that there is no clear indication has been provided by these previous LCA studies on how these relevance parameters causing variations in embodied carbon expenditure particularly for stone masonry wall repair in historic masonry buildings.

To accurately and meaningfully determine the EMI of the repair, the boundary conditions of LCA and maintenance interventions must be established. For the evaluation of the EMI of this paper, no allowance was made for materials that last, for example, 60 years and then have an “excess” service life of 40 years from the point of stone masonry wall repair, over the designated 100 years. It must be emphasised that, if materials used in stone masonry wall repair are expected to fail before one hundred years and can be replaced without removing the rest of stone masonry wall element, then only the embodied carbon expenditure associated with the particular repair materials (such as lime mortar materials for repointing, pinning and consolidation, and lime plaster materials for plastic repair) will be considered for evaluation in LCA. Additionally, if other components or the entire stone masonry wall element must be replaced because of the shorter lived components (such as in natural stone replacement), then the embodied carbon expenditure within “cradle-to-site” will be multiplied by the replacement, even if the materials removed have a potentially longer life expectancy or longevity of repair. Remarkably, in reality, it must be emphasised
that natural stone replacement commonly outlived predicted life of 100 years. Commonly, this is highly influenced by stone profiles as well as longevity of repair of for natural stone (Kayyan, 2013).

Previously, several LCA studies have been undertaken to evaluate embodied carbon in different types of buildings. However, the focuses of these previous works are centred largely on embodied energy figures (rather than embodied carbon expenditure) for limited types of buildings, such as new residential (Treloar, 1997, 1998; Pullen, 2000a, b; Dixit et al., 2010) and commercial buildings (Treloar, 1997; Yohanis and Norton, 2002; Dixit et al., 2010). Additionally, the focus of these previous LCA works do not specifically evaluate embodied carbon expended from stone masonry wall repairs during the maintenance phase.

Chronologically, few LCA studies in the public realm specifically investigate the carbon impacts of stone materials. Previous studies by Alshboul and Alzoubi (2008) and the University of Tennessee (2008a, b, c) on embodied carbon and energy values in Jordan and the USA, respectively relating to natural stone. Moreover, Venkitachalam (2008) had evaluated the carbon footprint for stone in the Scottish context; highlighted the fact that a high proportion of the carbon footprint (within “cradle-to-gate” LCA) for sandstone is contributed by transportation, i.e. transportation emissions were between 31 and 90 per cent of total represented embodied emissions associated with local and imported stone, respectively (Venkitachalam, 2008). It must be noted that, despite its aim to quantify the carbon footprint for stone, however, this study’s focus was restricted solely to sandstone and failed to take into account the proportion accrued in relation to other commonly used stones in the masonry walls of historic masonry buildings.

In 2010, Historic Scotland commissioned the Scottish Institute of Sustainable Technology (SISTech) and Heriot-Watt University undertaken a collaborative research project in order to understand embodied carbon in natural stone used in the construction and repair of Scotland’s buildings. Methodologically, the results of this study were integrated using Sima Pro and Gabi4, leading to the publication of “Embodied Carbon in Natural Building Stone in Scotland” by SISTech. Primarily, this study adopted the “cradle-to-site” LCA approach to evaluate dimension stone as a building material; this study demonstrated the overwhelming significance of transport, which results in a vast difference in carbon emissions depending upon where the stone is sourced. Significantly, findings of this study revealed that imported stone has an enormous impact on the overall carbon footprint. This study found that a massive increment of 90-550 per cent (over six times more) was noted in relation to transportation of stones imported mainly from China and India when compared to equivalent material sourced locally (see Crishna et al., 2011). It must be noted that, however, despite its primary aims to quantify a carbon footprint of locally produced (within Scotland and the UK) natural stone, the scope of this research project extends only to sandstone, granite and slate; therefore, embodied carbon for the repair materials used in stone masonry wall repair were regrettably not quantified by this study.

Clearly, to attain rational use of Green Maintenance model, embodied carbon expenditure of the repairs would have to be evaluated using multi-criteria approach comparable, reproducible methods. As clearly shown in the model, there is clearly a relationship between the number, type and longevity of maintenance interventions undertaken, and the embodied energy (CO₂ emissions) in repairs. Comparatively, this model also shows that a durable repair requiring fewer repeat interventions may incur less energy over the lifespan of the building than a less durable alternative. It must be
noted that, the parameters are influenced by many variables, such as; longevity of repair, resourcing and geographical location, and mode of transportation, degree of wall exposure, building and wall detailing, quality of initial work and specification, etc. (Forster and Carter, 2011; Torney et al., 2014; Torney and Forster, 2012).

Whilst it is appreciated that these variables are complex and wide ranging in nature it is possible to establish embryonic or early stage data values that enable rational evaluation and determination to be made. Refinement of this will obviously occur as carbon accounting and LCA becomes more prevalent and a common understanding of boundaries is universally adopted, enabling the model to work with greater accuracy.

3. Green Maintenance modelling: calculation procedures boundaries and LCA

The development of the calculation procedures underpinning the Green Maintenance model quantifies of the embodied carbon expended in historic fabric. This is correlated with the life expectancy of the repair. Using a set of unit processes and workflows from each stone masonry wall repair technique and potential repair scenario (see Figure 2), the embodied carbon calculation procedures were undertaken focusing upon “before” use stages (encompassing the extraction and processing of raw materials as well as manufacturing processes) and “use” stages (transportation and distribution) as defined by the Sustainable Building Alliance (2015).

These stages are utilised to define the boundaries of LCA and therefore attain tangible values to be entered into the model.

![Figure 2. Process map of the life cycle of stone for historic buildings](https://example.com/figure2.png)

<table>
<thead>
<tr>
<th>Embodied Carbon Expenditure for Stone Masonry Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Map of the Life Cycle of Stone and LCA Boundaries</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage</th>
<th>Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quayring and processing (cradle-to-gate)</td>
<td>Extraction, Overburden removal, Raw material extraction (quarrying), Transport, Primary processing, Secondary processing, Finishing and packaging</td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>Transportation of stone to building site</td>
</tr>
<tr>
<td>Use Stage</td>
<td>Maintenance intervention</td>
</tr>
<tr>
<td>Stone Masonry Wall Repair</td>
<td>Natural stone replacement, Repointing, Pinning and consolidation, Plastic repair</td>
</tr>
</tbody>
</table>

Source: Kayan (2013)
Cumulative embodied carbon expenditure

The embodied carbon for repairing stone masonry walls was calculated within “cradle-to-gate” (for quarrying, mining, manufacturing and processing) and “gate-to-site” (transportation to site). Green Maintenance model determined the efficiency in terms of EMI (CO₂ emissions per kg of materials used) of each stone masonry wall repair technique by comparing the relative embodied carbon expenditure (ce_i). The fundamental components of the model were based upon the maintenance interventions (n) and the total area of repaired stone masonry wall (m^2) within selected maintenance periods.

The cumulative embodied carbon expenditure can be generated by multiplying the total repaired stone masonry wall area (m^2) with the embodied carbon expenditure for repairing 1m^2 wall for each repair technique within a selected maintenance period. This normalised the area to enable rational comparison. This is expressed in following equation:

$$Cumulative \text{ Carbon expenditure on maintenance} = \sum_{i=1}^{n} ce_i$$

where n = number of interventions and ce_i = embodied carbon expenditure for the ith maintenance intervention (evaluated within selected “cradle-to-site” boundary of LCA).

For the purpose of this paper, it must be noted that, however, this could only be accurate if all the stone masonry wall repairs are carried out immediately after the life expectancy of the material used in each repair has concluded (Forster et al., 2011, 2013; Kayan, 2013).

Functional units of embodied carbon per m^2 (kgCO₂e/kg/m²)

The Green Maintenance calculation procedures utilises the embodied carbon expenditure to repair 1m^2 of wall repair for each stone masonry technique. In this paper, a functional unit of kgCO₂e/kg/m² was used for the calculation purpose. It was defined in kilograms of carbon dioxide emissions, equivalent per kilogram of stone masonry wall repair materials or kgCO₂e/kg. These were all calculated within the “cradle-to-site” of LCA on a yearly basis, for the selected maintenance period. To suit the purpose of this paper, the total embodied carbon per m² (kgCO₂e/kg/m²) expended from quarrying, manufacturing and transportation to historic masonry building sites within cradle-to-site was calculated for each repair type (used in repairing 1 m² stone masonry wall). The functional units of embodied carbon per m² was expressed as kgCO₂e/kg/m².

Table I establishes the main embodied carbon for various repair scenarios; it is evident that stone replacement has the highest embodied carbon expenditure of all the interventions (either for single or a combination of repair techniques on one typical sample building, and in this case is in this case CEC4-22-30, Shandwick Place of Edinburgh) based on its relative embodied carbon expenditure associated with alternative repair scenarios undertaken on normalised 1 m² of stone masonry wall (functional units of kgCO₂e/kg/m²). However, when this is placed in context of a 100-year maintenance period, it has the lowest EMI due to the short life expectancy of the other interventions. For the purpose of calculation of EMI of this paper, longevity of repair for stone repair techniques is based on data derived from Ashurst and Ashurst (1988), Ashurst (1994a, b), Ashurst and Dimes (1998), McMillan et al. (1999),
<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
<th>Scenario 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone replacement</td>
<td>Repointing</td>
<td>Pinning and consolidation, then stone replacement</td>
<td>Plastic repair</td>
<td>Plastic repair, then stone replacement</td>
</tr>
<tr>
<td>KgCO₂e/m²</td>
<td>–</td>
<td>49.965</td>
<td>–</td>
<td>49.965</td>
</tr>
<tr>
<td>Number of intervention (n)</td>
<td>1</td>
<td>0.8</td>
<td>–</td>
<td>0.7</td>
</tr>
<tr>
<td>Total average EMI</td>
<td>49.965</td>
<td>39.972</td>
<td>34.976</td>
<td></td>
</tr>
<tr>
<td>Repointing</td>
<td>–</td>
<td>1.641</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>KgCO₂e/m²</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Number of intervention (n)</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total average EMI</td>
<td>–</td>
<td>6.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinning and consolidation</td>
<td>–</td>
<td>37.725</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KgCO₂e/m²</td>
<td>–</td>
<td>–</td>
<td>60.049</td>
<td>60.049</td>
</tr>
<tr>
<td>Number of intervention (n)</td>
<td>–</td>
<td>–</td>
<td>3.33</td>
<td>1</td>
</tr>
<tr>
<td>Total average EMI</td>
<td>–</td>
<td>37.725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic repair</td>
<td>–</td>
<td>–</td>
<td>60.049</td>
<td>60.049</td>
</tr>
<tr>
<td>KgCO₂e/m²</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Number of intervention (n)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total average EMI</td>
<td>–</td>
<td>199.963</td>
<td>60.049</td>
<td></td>
</tr>
<tr>
<td>Overall total average EMI</td>
<td>49.965</td>
<td>6.564</td>
<td>77.697</td>
<td>199.963</td>
</tr>
</tbody>
</table>

Notes: (a) Materials data are derived from Crishna et al. (2011) and Hammond and Jones (2008a, b, 2011); transport data are derived from the Department of Environment, Food and Rural Affairs (Defra)/Department of Energy and Climate Change (DECC) (2009) and the Institut für Energie und Umweltforschung Heidelberg GmbH (IFEU) (2008); (b) Embodied carbon expenditure for materials transportation (gate-to-site) @ 132 gm CO₂ emission factors per tonne km or 1.32×10⁻⁴ kgCO₂ per kg km emission factors using updated 2008 CO₂ emission factors per tonne km for all HGV road freight (based on UK average vehicle loads in 2005) (IFEU, 2008; Defra/DECC, 2009) or mass (kg) emission factors per kg km (for the purpose of this paper, 132 gm CO₂ emission factors or 1.32×10⁻⁴ kgCO₂ per kg km emission of HGV road freight were used to calculate embodied carbon expended in the transportation of stone masonry wall repair materials to building sites, within “gate-site” boundary of LCA) distance (shortest and most direct distance travelled for repair material transportation from resourcing location (quarrying or mining) to building site (in km)). A tonne km (t km) is the distance travelled multiplied by the weight of freight carried by the HGV. So, for example, an HGV carrying 5 tonnes freight over 100 km has a t km value of 500 t km. The CO₂ emissions are calculated from these factors by multiplying the number of t km the user has for the distance and weight of the goods being moved by the CO₂ conversion factor for the relevant HGV class; (c) HGV is heavy good vehicle (based on UK average vehicle loads in 2005, and defined by Defra/DECC, 2009); Sample taken from 22-30 Shandwick Place of Edinburgh

Source: Kayan (2013)

Table I. Embodied carbon expenditure associated with alternative repair scenarios undertaken on normalised 1 m² of stone masonry wall (functional units of kgCO₂e/kg/m²)
Historic Scotland (2003a, b, 2007a, b, c, d), Young et al. (2003), BCIS (2006) and Building Research Establishment (BRE) (2010).

Following equation was utilised to model the data:

\[
\text{Total approximate of embodied carbon expenditure (per 1m}^2\text{ stone masonry wall repaired)} = \sum_{n} ECE_{\text{cradle-to-site}}(m^2)_n \pm ECE_{\text{gate-to-site}}(m^2)_n
\]

where \(ECE_{\text{cradle-to-gate}}(m^2)_n\) = embodied carbon expenditure value on every 1 m\(^2\) of repaired stone masonry wall using relevant repair techniques within “cradle-to-gate” boundary and \(ECE_{\text{gate-to-site}}(m^2)_n\) = embodied carbon expenditure value for transporting repair materials used in repairing 1 m\(^2\) stone masonry wall using relevant repair techniques within “gate-to-site” boundary.

Total embodied carbon expenditure for selected maintenance period within “Cradle-to-Site”

The total embodied carbon expenditure within selected maintenance periods were calculated based on the total cumulative values for the stone masonry wall repair.

The total embodied carbon evaluates a series of complete interventions within selected maintenance periods. This was calculated using following equation:

\[
\text{Overall total of embodied carbon expenditure} = \sum_{n=1}^{n} ECE_{\text{cradle-to-site}t_n} = ECE_{\text{cradle-to-site}t_1} + ECE_{\text{cradle-to-site}t_2} ... ECE_{\text{cradle-to-site}t_n}
\]

where \(t_n\) = relevant repair technique \((t_n)\) and \(t_i = 1\) represent first intervention which started initially with value of \((n)\) is \(= 1\). \(ECE_{\text{cradle-to-site}t_n}\) = total embodied carbon expenditure for quarrying, manufacturing and transporting of repair materials used in repairing stone masonry walls of historic masonry buildings using relevant repair techniques within “cradle-to-site” and selected maintenance periods (generated from Equation (2)).

Comparative embodied carbon expenditure determined on EMI

Theoretically, an organisation could repair a 1 m\(^2\) area of deteriorated historic stone masonry using different types of repair techniques. Various repair permutations could be enlisted to undertake the works. For example, a single or combinations of alternative repair scenarios. Additionally, it must be placed on the calculation procedures of this paper, which should be able to draw rational comparisons between individual and multiple cumulative maintenance interventions. An evaluation of the embodied carbon expenditure could then be calculated for each of these repairs techniques within the selected boundary of LCA.

Table II represents the total EMI expended for four types of stone masonry wall repairs on different buildings. For examples, there are differences of EMI expended on repair for each building with different management and ownership. Comparatively, EMI (kgCO\(_2\)e/kg) for replacing natural stone was lower than the other three repair
techniques within “cradle-to-site” and 100-year maintenance profile periods with 170.969, 189.114 and 148.068 kgCO₂e/kg for respective HS1, NTS1 and CEC1 (see note).

The typical results from HS1-Doune Castle show that the range of EMIs for natural stone replacement is 31.853-77.909 kgCO₂e/kg. This is slightly higher than with repointing (11.312 kgCO₂e/kg) and plastic repairs (20.147-376.130 kgCO₂e/kg). However, it must be emphasised that the total embodied carbon expenditure for repointing is normally the highest. This is due to this technique being used for the largest total repaired area of delaminated surfaces of stone masonry walls; this trend occurred across selected sample properties. The trend is also similar with plastic repairs, due to the enormous usage of materials of a high embodied carbon coefficient value, such as secondary fixing materials, particularly for multi-layer patch. This is due to the higher longevity of repair this type requiring only one intervention within the same maintenance period. In general, natural stone replacement has the lowest total embodied carbon expenditure compared to repointing, pinning and consolidation and plastic repair. Despite the lowest initial EMI associated with lime mortar repointing, this repair technique is commonly subject to large total area of delaminated surface wall to be repaired.

Testing

As expressed in Equation (3), the efficiency of embodied carbon expenditure (CO₂ emission) per year for one individual stone masonry wall repair technique would be a function of the annual total of embodied carbon expenditure and the longevity of repair undertaken.

The Green Maintenance model can be tested on its EMI, for either single or a combination of stone masonry wall repair techniques in different repair scenarios.
This will ascertain repairs suitability based on longevity over the maintenance period. If a hypothetical 100 years is evaluated for stone masonry wall repair, the need to intervene will be a function of the life expectancy of the repair. Within this period, the values in Table I were entered into Equation (3). This equation determines the total EMI of either a single repair technique or a combination of them in different repair scenarios in the stone masonry wall structure for 100-year maintenance periods. Obviously, inconsistent data on the durability of product or materials makes the determination and benchmarking of component life difficult (Balaras et al., 2005) and leads to some ESL predictions being quite unrealistic. It must be noted that, in the case of natural stone masonry, an average life expectancy of 100 years does not take account of a well-maintained building (BCIS, 2006) or the vast differences between stone types. There are many examples of stone still functioning satisfactorily in buildings that are several hundred years old. It must be emphasised, however, that the time between interventions is influenced by many variables, including material durability, degree of exposure, building detailing, and quality of repair and specification. For example, undertaking repairs at frequent intervals, e.g. 50 or 200 years might or might not increases the risk of mechanical damage to the masonry associated with scaffolding. Practically, less regular masonry repair can reduce the risk of this damage and also aligns with the philosophical principle of least intervention.

For instance, Table III summarises the overall total EMI, evaluated in terms of embodied carbon expenditure, over the 100-year maintenance period for different repair scenarios at the same sample property (in this case CEC4-22-30, Shandwick Place of Edinburgh). It must be noted that, longevity of repair for stone repair techniques is based on data from Ashurst and Ashurst (1988), Ashurst (1994a, b), Ashurst and Dimes (1998), McMillan et al. (1999), Historic Scotland (2003a, b, 2007a, b, c, d), Young et al. (2003), BCIS (2006) and BRE (2010).

From the data shown in Tables I and III, it is evident that stone replacement has the highest embodied carbon expenditure of all the individual interventions. However, when this is placed in context of a 100-year maintenance period, it has the lowest EMI due to the short life expectancy of the other interventions. Testing results in Table III also revealed that on typical one sample building (in this case 22-30 Shandwick Place of Edinburgh) repeated plastic repair (Scenario 4) had a 300 per cent higher EMI compared to replacement stone (Scenario 1) (nearly 40 per cent higher over the same period as noted by Forster et al., 2011). In comparison, repeated repointing (Scenario 2) had an EMI that was nearly 87 per cent lower than replacement stone over the same period. Comparatively, it must be emphasised that the lower EMI value of repeated repointing (Scenario 2) is influenced by the generally high number of interventions (n) and the large area (m²) of delaminated stone masonry wall surface repaired. Despite the lower percentage of EMI for repeated repointing (Scenario 2) in this building sample, it must be noted that, the whole surface of the wall is essentially required for overall surface repointing works within the same arbitrary period. This intervention is commonly undertaken as a good conservation approach (planned maintenance) during the maintenance phase of the stone masonry wall. Consistently, based on this scenario, then the EMI for repointing could be higher than stone replacement (Scenario 1). Conversely, the latter which commonly undertaken on small surface areas of wall repair (based on pieces or block of stones), will implicates consistent small EMI as compared to the former.

It must be emphasised that, if deterioration has occurred to the substrate forming the base of the plastic repair, therefore, it is necessary to cutback the natural stone further.
Scenario 1: Stone replacement
(Indenting + lime grout mix)
- **KgCO₂e/m²**
 - 24.683
- **Number of interventions (n)**
 - 1
- **Total EMI**
 - 24.683

Scenario 2: Repointing
(Lime mortar)
- **KgCO₂e/m²**
 - –
- **Number of interventions (n)**
 - 4
- **Total EMI**
 - 6.564

Scenario 3: Pinning and consolidation, then stone replacement
(a) Dowels + lime grout mix
- **KgCO₂e/m²**
 - –
- **Number of interventions (n)**
 - 1
- **Total EMI**
 - 29.402
(b) Dowels + epoxy resin
- **KgCO₂e/m²**
 - –
- **Number of interventions (n)**
 - 1
- **Total EMI**
 - 46.047

Scenario 4: Plastic repair
(a) Lime-based mortar + aggregates
- **KgCO₂e/m²**
 - –
- **Number of interventions (n)**
 - 3.33
- **Total EMI**
 - 21.608
(b) Lime-based mortar (multi-layer plastic repair)
- **KgCO₂e/m²**
 - –
- **Number of interventions (n)**
 - –
- **Total EMI**
 - 378.315

Scenario 5: Plastic repair, then stone replacement
- **Overall total EMI**
 - 149.494

Notes:
(a) Materials data are derived from Crishna et al. (2011) and Hammond and Jones (2008a, b, 2011); transport data are derived from the Defra/DECC (2009) and the IFEU (2008); (b) Embodied carbon expenditure for materials transportation (gate-to-site) @ 132 gm CO₂ emission factors per tonne km or 1.32×10⁻⁴ kgCO₂ per kg km emission factors using updated 2008 CO₂ emission factors per tonne km for all HGV road freight (based on UK average vehicle loads in 2005) (IFEU, 2008; Defra/DECC, 2009) or mass (kg)*emission factors per kg km (for the purpose of this paper, 132 gm CO₂ emission factors or 1.32×10⁻⁴ kgCO₂ per kg km emission of HGV road freight were used to calculate embodied carbon expended in the transportation of stone masonry wall repair materials to building sites, within “gate-site” boundary of LCA)*distance (shortest and most direct distance travelled for repair material transportation from resourcing location (quarrying or mining) to building site (in km)). A tonne km (t km) is the distance travelled multiplied by the weight of freight carried by the HGV. So, for example, an HGV carrying 5 tonnes freight over 100 km has a t km value of 500 t km. The CO₂ emissions are calculated from these factors by multiplying the number of t km the user has for the distance and weight of the goods being moved by the CO₂ conversion factor for the relevant HGV class; (c) HGV is heavy good vehicle (based on UK average vehicle loads in 2005, and defined by Defra/DECC, 2009); (d) Sample taken from 22-30 Shandwick Place of Edinburgh

Source: Kayan (2013)
Importantly, this will prevent repeated plastic repairs due to build-up of excessive thickness. In this situation, the plastic repair and the decayed natural stone is assumed to be removed after 30 years and new stone built into a depth of 100 mm. In accordance with Scenario 2 the replacement stone will last beyond the 100-year maintenance period so only 0.7 of its EMI is attributed to the study period (single plastic repair, then stone replacement, in Scenario 5).

Importantly, the transport of materials has a major impact on the EMI results (as noted by Crishna et al., 2011). Comparatively, Kayan (2013) claim that transportation accounts contribute to similar trend of impact on EMI (given uncertainties, exclusion, inclusion, assumptions and limitation of LCA) for more than one-fifth (20 per cent) (in all the scenarios), as compared to one-quarter (25 per cent) as noted by Forster et al. (2011). This work shows that the efficiency of stone masonry wall repair techniques can be evaluated in terms of embodied carbon expenditure as shown by the Green Maintenance model test results of the EMI. Practically implemented but geographically specific the range of EMIs for natural stone replacement is 31.853-77.909 kgCO₂e/kg. This is slightly higher than with repointing (11.312 kgCO₂e/kg) and plastic repairs (20.147-376.130 kgCO₂e/kg). Testing results are similar across other samples. However, it must be emphasised that the total embodied carbon expenditure for repointing is normally the highest. This is due to this technique being used for the largest total repaired area of delaminated surfaces of stone masonry walls; this trend occurred across selected sample properties. The trend is also similar with plastic repairs, due to the significant use of materials of a high embodied carbon coefficient value, such as secondary fixing materials, particularly associated for multi-layer patches. Also, it must be emphasised that certain combinations of stone masonry wall repair are more common than others and interchangeable, i.e. pinning and consolidation would be done only once and followed by stone replacement, while a plastic repair is followed by stone replacement within a selected arbitrary period. By contrast, it would be highly unusual to pin and consolidate and then undertake a plastic repair within the same period.

4. Discussion
The results show that all interventions have an associated carbon cost. This model utilised an arbitrary 100 years (kgCO₂e/kg/m²) maintenance profile period for this test but any duration could be theoretically evaluated. Clearly, the longevity of the repair types and numbers of interventions are interrelated, i.e. one natural stone vs four or five plastic repairs and repointing.

The results show that natural stone replacement has the lowest embodied carbon and energy expenditure within the 100-year maintenance profiles. Comparatively, within the selected maintenance period of historic masonry buildings, natural stone replacement commonly requires the lowest number of interventions (n) of all the techniques. The total area repaired using this technique is generally smaller than with the other repair techniques. These results suggest that the smallest repaired area of stone masonry wall has also contributed to the lowest total embodied carbon expenditure within the same maintenance periods.

Results also shows that variations in embodied carbon expenditure for stone masonry wall repair techniques is due to differences in the repair materials LCA profile and longevity. It has been established that the embodied carbon coefficient and quantity (mass in kg) of repair materials is largely associated with transportation CO₂ emission per tonne km and the multi-faceted issues surrounding material procurement.
and the influencing factors relating to the “gate-to-site” boundaries. Importantly, differences in CO₂ emissions per mass kg of every repair material vary due to transportation distances and this adversely affects the environmental inputs. Additionally, the differences in CO₂ emitted in materials transportation were also dependant on the mode/vehicle of transport used.

It must be noted that the high value of embodied carbon of repair materials used in stone masonry wall repair (such as stone and lime) was due to the great use of energy, electricity and fuel combustion during the quarrying and processing process (“cradle-to-gate”). Additionally, a high value of CO₂ emitted for transportation of imported repair materials (such as lime) was due to the long distance between the resourcing location and building site. In comparison, all types of lime materials used for repair on the selected sample buildings are mainly imported from St Astier in Southwest France and the Canton of Jura in Northwest Switzerland (Jura Kalk). Significantly, the long transportation distance for imported materials such as lime materials and Jura Kalk is commonly higher than that of locally sourced materials (stone, sand, cement, brick dust/fire clay/fly ash, aggregates and all secondary fixing materials). In some cases, transportation distance for the former was approximately 1,400-2,000 km as compared to around 10-138 km for the latter (Kayan, 2013). Moreover, high value of embodied carbon coefficient of lime used in stone masonry wall repair was due to the great use of energy, electricity and fuel combustion during the quarrying and processing process (“cradle-to-gate”).

Applying the different source of power generation (as well as GHG) contributes to different CO₂ emissions, particularly in product or materials manufacturing. It must be noted that embodied carbon coefficient values from foreign data were always influenced by national differences in fuel mixes and electricity generation. For example, Frischknecht (1998) has developed a life cycle inventory model on how different source of power generation influencing CO₂ emission in product manufacturing “national electricity mix” and “small scale gas-fired combined heat and power generation”.

A significant number of previous works relating to LCA have attempted mainly to provide databases for the environmental impact and embodied carbon coefficient of building materials. But, most of the generated results have been incorporated into commercial software and handbooks that are widely used by academics and the industry alike. Generally, and inevitably, researchers studying LCA disagree about the selection of “best values” for the embodied carbon coefficient of materials. Consequently, the choice of “best value” for embodied carbon coefficient of a typical material largely relies upon careful analysis, data availability and the comprehensive boundaries of LCA (Dixit et al., 2010).

For the purpose of this paper, primary energy sources (such as coal and electricity) were only evaluated if relevant. However, this primary energy was only evaluated in order to attain a consistency measurement in terms of embodied carbon expenditure (CO₂ emissions) within “cradle-to-site”, i.e. for quarrying, processing and transporting repair materials used for repairing historic buildings stone masonry walls. In addition, all direct embodied carbon use from fuels and electricity at raw material extraction (embodied carbon coefficient for quarrying, mining, manufacturing and processing) are included in calculations on embodied carbon expenditure of stone masonry wall repairs.

In line with PAS 2050, some sources of embodied carbon were excluded in LCA for this paper including embodied carbon expenditure (from direct consumption of fuels) in the quarrying, mining, manufacturing and processing procedure and maintenance of used machinery and vehicle, off-site transport and electricity (either the
sources purchased from the national or from another supply) (British Standard Institution, 2008). It must be emphasised that, there is varying value for embodied carbon coefficients of stone masonry wall repair materials (including additional materials such as cement, all lime, brick dust/fire and clay/fly ash) as a consequence of their different technology, fuels, electricity and energy used in within “cradle-to-site” boundary of LCA. The number of interventions (n) and total area repaired (m²) assessed is also critical.

Practically, the results will also be influenced by the specifiers philosophical attitude towards stone masonry wall repair and their broader repair strategies (Forster, 2010a, b). The results show that by using the calculation procedures, the Green Maintenance model can evaluate the efficiency of stone masonry wall repairs in terms of embodied carbon expenditure. Significantly, the model shows that there is correlation between test results and the efficiency of stone masonry wall repairs in terms of embodied carbon expenditure.

For the purpose of this paper, only the total embodied carbon expenditure for the repair of deteriorated stone masonry during the maintenance phase were considered for calculation within the “cradle-to-site” of LCA. It must be noted that initial serviceability conditions and major refurbishments involving stone masonry walls of historic masonry buildings in the form of total embodied carbon were not calculated. Also, the data utilised in Green Maintenance result testing should become more rigorous with time as LCA and life expectancy information of products or repair materials becomes more widely available.

5. Conclusions
The understanding of the interrelationship of the longevity of repair materials and their embodied carbon (within selected boundaries and maintenance period) was utilised to test the Green Maintenance model. In this paper, different repair techniques and scenarios (either single or a combination) were utilising different material types and their efficiency in terms of EMI. The calculation procedures of Green Maintenance presented in this paper represents a meaningful and reproducible mechanism for the evaluation of the EMI of the materials used in repairing stone masonry walls of historic masonry buildings. Apparently, the model has shifted current paradigm of conventional frameworks to embodied energy expenditure evaluation by not only promoting the use of traditional materials, it also provides options to attain low carbon targets via repair interventions over the life cycle. This calculation procedure establishes and tangibly tests the Green Maintenance model and supports its adoption for achieving more rigorous analysis of repair strategies. This allows rational appraisal of the different maintenance strategies and ultimately makes decisions easier to defend. Additionally, the model also promotes adoption of sustainable repair approach and can be adopted to evaluate of its impact on other repair options and building forms. Significantly, it could be of value to those making and support environmentally focused decisions.

References

Maintain our Heritage (2004), Putting it Off: How Lack of Maintenance Fails our Heritage, Maintain our Heritage, Bath.

Further reading

About the authors

Dr Brit Anak Kayan is a Senior Lecturer at the Department of Building Surveying, Faculty of Built Environment, University of Malaya, Kuala Lumpur, Malaysia. He has over 13 years of experience as Academician and two years in industrial practice, latterly specialising in building conservation, sustainable materials and repair. Professionally, Brit is a Full Member of the Royal Institution of Surveyors, Malaysia (MRISM) and Registered Conservator of the Department of National Heritage, Ministry of Tourism and Culture (MOTAC), Malaysia. Dr Brit Anak Kayan is the corresponding author and can be contacted at: brit284@um.edu.my

Dr Alan M. Forster is an Associate Professor (Senior Lecturer) and Programme Leader for MSc in Building Conservation (Technology and Management) at the Heriot-Watt University, Edinburgh. He has ten years industrial experience in Building Surveying, general construction and building conservation practice. Professionally, he is a Fellow of the Chartered Institute of Builders (FCIOB); an elected member of the Royal Institution of Chartered Surveyors (RICS) Building Surveying Professional group (Scotland); a member of the Editorial Advisory Group for the *RICS Conservation Journal* and a member of the Editorial advisory board for *Structural Survey: Journal of Building Pathology & Refurbishment*. His research and consultancy activities are undertaken within the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design; investigating traditional and low carbon building materials and construction technologies; building pathology and deterioration; building resilience to climate change; “Green” Maintenance and building conservation philosophy. He was awarded the Sir Edmund Happold Senior Visiting Research Fellowship at the University of Bath in 2011, and the Royal Society of Edinburgh Bilateral exchange programme visiting Research Fellowship in 2014, awarded in collaboration with the Academy of Sciences for the Czech Republic. He has attained cumulative research grant funding totalling £446,000.00 from major funding councils including, EPSRC,
TSB, RSE and British Council. Dissemination of these projects and his broader research portfolio has led to the publication of over 30 academic peer reviewed journal and conference papers, four of which were recipient of outstanding and highly commended journal paper awards.

Professor Phillip F.G. Banfill is a Materials Scientist, with over 35 years experience of research and education in a university environment. He was appointed Professor of Construction Materials at the Heriot-Watt University, Edinburgh, in 1995 and has published two books and over 170 papers on materials and energy utilisation in buildings. As course leader of Heriot-Watt’s MSc in Building Conservation (Technology and Management) for six years, he has a strong interest in the historic built environment. He currently leads the Urban Energy Research Group which studies: climate change, sustainability, CO2 reduction and life cycle assessment; existing building stock – refurbishment, modelling and assessment; historic, traditionally constructed and “hard to treat” buildings; low and zero carbon technologies, and system integration; energy consumption and performance monitoring; and human factors – users, policymakers, investors, fuel poverty.

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com