To Study the Effect of CO₂ Absorption in Aqueous MEA Solution using Kent-Eisenberg Thermodynamic Model

1Harith Rashid, 1Sharifah Bee Abd Hamid and 1M. Iskandar M. Nor
2Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, Kuala Lumpur, Malaysia
3Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia

ABSTRACT

This work presents a thermodynamic investigation of CO₂ absorption in Mono-ethanol Amine (MEA) solution based on extensive experimental studies on this topic. Presented model can predict CO₂ absorption in the amine solution with high accuracy. The objectives of the current research are to study the effect of CO₂ absorption for a wide range of gas/liquid flow rate and CO₂ concentration (5 -20%) in the sour gas using Kent-Eisenberg Thermodynamic Model. CO₂ loading in the lean gas was 0.006 mol/mol. CO₂ absorption in MEA was studied at 25 °C and atmospheric pressure. In the open literature, many experimental data is available but very less work has focus on modeling and simulation of CO₂ absorption in MEA solution. The predicted CO₂ absorption trend and CO₂ concentration in the sweet gas is found to be in good agreement with the experimental results, which validates the simulated results for CO₂ mass transfer in MEA solution. Effect of Liquid and gas flow rate and concentration of CO₂ in flue gas are also important parameters in CO₂ absorption process and are discussed in detail.

INTRODUCTION

Chemical industry is producing million’s of tones of CO₂ per year which is the main cause of increasing global warming. So removing CO₂ from industrial gases is of prime importance. One of the most economical and commonly used processes for CO₂ removal is chemical absorption/desorption technique in different amine aqueous solutions. This absorption/desorption requires a circulating solvent capable of capturing high amount of CO₂ at ambient temperature/pressure and release in the desorption column requiring less energy (Dechen Zhu, M.F., 2012). Selection of circulating liquid is a critical step in the absorption/desorption process. The critical issues are (1) greater capacity of CO₂ capture (2) degradation of the solvent at extreme conditions (Rochele, F.C.a.G.T., 2011; Lawal, A.O.a.R.O.I., 2006) (3) efficient desorption (4) slow reaction rates for thermal and oxidation degradation (5) cheap and easily availability (Thu Nguyen, M.H., Gary Rochelle, 2011) (6) non volatility in regenerator (7) compatibility with packed bed material and phase (Fu, D.X., 2012) (8) foam ability.

MEA, being a primary amine, have very fast absorption as compared to other amine solutions. It is being used as a solvent for CO₂ removal in most of the industries. Thermodynamic properties for MEA-H₂O-CO₂ are required to model and simulate CO₂ absorption process and have been reported in the literature. These properties are shown in Table 1.

Effective design for CO₂ absorption into amine solution, experimentally on a pilot scale absorption column has been investigated by many researchers (Patricia Mores, N.S., Sergio Mussati, 2011; Mandala, M.G.B.P., 2006; Raphael Idem, M.W., 2006; Jimmy Xiao, C.W.L., Meng-Hui Li, 2000). These pilot scale equipment are designed for specific process parameters and are expensive to build for research purpose. Process simulation and modelling have a prominent role in evaluation the process parameters and to predict the results. System optimization is also required for reducing the operational cost and develops an energy efficient process. Simulation and modelling are therefore important for both designing absorption column and to find optimum operating conditions for given process conditions.

Many of the models have been proposed for simulating the experimental absorption of CO₂ into MEA solution, but all of the models have limitation of one way or the other. A model based on enthalpy associated with absorption/desorption was developed to investigate amine basicity and degree of carbamate formation (Nichola McCann, M.M. and Moetaz Attalla, 2008). However, the model proposed has a 10% error in
predicting the cyclic capacity and CO₂ absorption. In-silico amine screen was developed by (Levente, Y.E., 2011) for efficient absorption of CO₂. A reliable and robust model was also developed, but the model was able to predict the experimental data with 10 % deviation from experimental data. (Ana-María Cormos, J.G., 2012) developed a model using MATLAB (Anonymous,1992) to simulate CO₂ absorption in MEA solution, but simulated results shows up to 11.75 % deviation from experimental data. Another model presented includes differential equations based on mass and heat transfer of CO₂ into MEA solution with a higher concentration of MEA and simulated data is not in line with experimental data (Ugochukwu, H.F.S., 2009). Mass transfer of CO₂ into MEA solution in a packed column and proposed a model that takes into account the wetting of the packed surface, but for higher MEA concentrations (Švandová, J.M.Z., L. Jellemenský, 2008). A rate based mathematical model was developed by (Patricia Mores, N.S., Sergio Mussati, 2012) to predict CO₂ absorption in MEA solution using random packing in packed column assuming that the liquid amine solution is an ideal solution and validate his data using data points from HYSYS and have considerable error in validating the model. CO₂ absorption from CO₂–CH₄ gas mixture into MEA solution was also studied by (Somnuk Boributh, W.R., 2012) using a poly-vinylidene-fluoride hollow fibre membrane contactor for higher CO₂ absorption. A mathematical model was developed, assuming that the system is steady state and gas stream is ideal gas with no axial absorption, to validate the experimental results for estimating the wetting ratio as a function of liquid velocity. The model was proposed by (Chechet Biliyok, A.L., 2012) for CO₂ removal post combustion gases and the model was validated not only for steady state conditions but also for dynamic conditions. Again, this model was not able to predict the experimental data points.

Table 1: Thermodynamic properties for MEA-CO₂-H₂O system.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid density</td>
<td>[kg/m³]</td>
<td>(Cheng, S., 1996)</td>
</tr>
<tr>
<td>Surface tension of the liquid solution</td>
<td>[N/m]</td>
<td>(Gonzalo Vazquez, E.A., 1997)</td>
</tr>
<tr>
<td>Viscosity of water</td>
<td>[N s/m²]</td>
<td>(Cheng, S., 1996)</td>
</tr>
<tr>
<td>Viscosity of gas</td>
<td>[N s/m²]</td>
<td>(Ayyaz Muhammad, M.I.A.M., 2008; Reid, R.C., 1987)</td>
</tr>
<tr>
<td>Specific wetted area for mass and heat transfer</td>
<td>[m²/m³]</td>
<td>(Billets, R. M. Schultes, 1999)</td>
</tr>
<tr>
<td>Diffusion coefficient of CO₂ in liquid solution</td>
<td>[m²/s]</td>
<td>(Peter, E.S.H., 2008; Jien-Jie Ko, T.C.T., 2001)</td>
</tr>
<tr>
<td>Diffusion coefficient of MEA in liquid solution</td>
<td>[m²/s]</td>
<td>(Erwin, M.J.M.T.R., 1993)</td>
</tr>
<tr>
<td>Mass transfer coefficients for gases and liquids</td>
<td>[m/s]</td>
<td>(Billets, R. M. Schultes, 1999)</td>
</tr>
<tr>
<td>Heat transfer coefficient</td>
<td>[W/(m² K)]</td>
<td>(Bird, R.B., 2002)</td>
</tr>
<tr>
<td>Second order reaction rate</td>
<td>[m³ mol/s]</td>
<td>(Versteeg, G.F., 1996)</td>
</tr>
<tr>
<td>Henry’s law constant of CO₂ over liquid solution</td>
<td>[(Pa m³/mol)]</td>
<td>(Wang, Y.W., 1992)</td>
</tr>
<tr>
<td>Equilibrium constant of absorption</td>
<td>[mol/m³]</td>
<td>(Gabrielsen, J., 2007)</td>
</tr>
<tr>
<td>Heat capacity of the liquid solution</td>
<td>[J/(mol K)]</td>
<td>(Maham, Y., 1997)</td>
</tr>
<tr>
<td>Heat capacity of the gases</td>
<td>[J/(mol K)]</td>
<td>(Reid, R.C., 1987)</td>
</tr>
<tr>
<td>Heat of absorption for CO₂</td>
<td>[J/mol]</td>
<td>(Gabrielsen, J., 2007)</td>
</tr>
</tbody>
</table>

To make the absorption/desorption faster the gas/liquid flow rate flexibility should be there, hence this is one of the objective of this study. In the industry the CO₂ concentration varies significantly in sour gas so in current investigation, the CO₂ concentration has a wide range from 5-20 % and is the second objective of this study. In the next section, the experimental setup and test cases will be described before presenting the results with the two objectives.

Reaction mechanism and kinetics:

Many researchers have analyzed reaction mechanism for CO₂ absorption in MEA solution. Still this mechanism is not fully understood. Different reaction steps refereed by researcher for development of their mathematical models are considered in this research (Jozsef Gaspar, A.M.C., 2012; Ying Zhang, H.Q., 2011; Ahmed Aboudheir, P.T., 2003). Reactions 1-12 may occur during CO₂ absorption in amine solution.

Ionization of water:

\[2H_2O \leftrightarrow H_3O^+ + OH^- \] \hspace{1cm} (1)

Dissociation of dissolved CO₂ and formation of Carbonic acid:

\[2H_2O + CO_2 \rightarrow k_{d1} \rightarrow H_2C_3O^+ + HCO_3^- \] \hspace{1cm} (2)

Dissociation of Bicarbonate:

\[H_2O + HCO_3^- \rightarrow k_{d3} \rightarrow H_3O^+ + CO_3^{2-} \] \hspace{1cm} (3)

Formation of Zwitter ion (CO₂ reaction with MEA):

\[CO_2 + MEA \leftrightarrow k_{a3} \rightarrow MEA^+COO^- \] \hspace{1cm} (4)
Deprotonating of Zwitter ion:
\[\text{MEA}^+\text{COO}^- + \text{MEA} \leftrightarrow k_1 \text{MEA}^+ + \text{MEA} \text{COO}^- \]
\[\text{MEA}^+\text{COO}^- + H_2O \leftrightarrow k_2 \text{MEACOO}^- + H_3O^+ \]
\[\text{MEA}^+\text{COO}^- + \text{OH}^- \leftrightarrow k_3 \text{MEACOO}^- + H_2O \]

Bicarbonate formation:
\[\text{MEA}^+ + HCO_3^- \leftrightarrow k_4 H_2O + \text{MEACOO}^- \]

Deprotonating of MEA:
\[H_2O + \text{MEA}^+ \leftrightarrow k_5 \text{MEACOO}^- + \text{MEA} \]

Bicarbonate formation:
\[\text{CO}_2 + \text{OH}^- \leftrightarrow k_6 HCO_3^- \]

Carbonates and bicarbamate:
\[\text{MEA}^+\text{COO}^- + \text{HCO}_3^- \leftrightarrow k_7 \text{H}_2\text{CO}_3 + \text{MEA}^- \text{COO}^- \]
\[\text{MEA}^+\text{COO}^- + \text{CO}_3^{2-} \leftrightarrow k_8 \text{HCO}_3^- + \text{MEACOO}^- \]

Concentration of carbonate and bicarbamate in CO\(_2\) loaded amine solutions is considered significantly as they are the main source of CO\(_2\) absorbed in the amine solution (Ahmed Aboudheir, P.T., 2003). Formation of Zwitter ion is one of the main contributors for CO\(_2\) absorption in the amine solution. Reaction 5-7 shows formation of Zwitter ion containing CO\(_2\) molecule attached with the amine solution which is deprotonated later in the desorption section to collect the absorbed CO\(_2\) (Ahmed Aboudheir, P.T., 2003; Adisorn Aroonwilasas, A.C., 2003; Mohamed Edali, A.A., Raphael Idem, 2009).

CO\(_2\) absorption in MEA solution is exothermic and have high reaction rate. Temperature of the system rises when CO\(_2\) comes in contact with the amine solution and detail of temperature profile in absorption column is discussed in detail, in this research. Reaction rate reported by different researcher is tabulated along with temperature range, experimental technique and MEA concentration in Table 2.

Table 2: Reaction rate for CO\(_2\) absorption in MEA solution*

<table>
<thead>
<tr>
<th>[MEA] (mol/dm(^3))</th>
<th>Experimental Technique</th>
<th>T (K)</th>
<th>(k) (dm(^3)/mol s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25–2.0</td>
<td>Laminar jet absorber</td>
<td>294.5</td>
<td>5400</td>
<td>(Astaria, G., 1961)</td>
</tr>
<tr>
<td>1.6–4.8</td>
<td>Laminar jet absorber</td>
<td>298</td>
<td>7500</td>
<td>(Clarke, J.K.A., 1964)</td>
</tr>
<tr>
<td>1</td>
<td>Laminar jet absorber</td>
<td>303</td>
<td>9700</td>
<td>(Sharma, M.M., 1965)</td>
</tr>
<tr>
<td></td>
<td>Laminar jet absorber</td>
<td>308</td>
<td>13,000</td>
<td>(Danckwerts, P.V., M.M. Sharma, 1966)</td>
</tr>
<tr>
<td>0.02–0.18</td>
<td>Stirred cell reactor</td>
<td>353</td>
<td>90,400</td>
<td>(Alper, E., 1990)</td>
</tr>
<tr>
<td>0–0.06</td>
<td>Rapid mixing method</td>
<td>278–303</td>
<td>9.77 × (10^9) exp(−4955/T)</td>
<td>(Hikita, H., 1979)</td>
</tr>
<tr>
<td>0–0.45</td>
<td>Stopped flow method</td>
<td>278–298</td>
<td>(1.23 \times 10^3) exp(−5078/T)</td>
<td>(Penny, D.E., T.J. Ritter, 1983)</td>
</tr>
<tr>
<td>0.1–0.4</td>
<td>Wetted wall column</td>
<td>303</td>
<td>3.045 × (10^3) exp(−5617/T)</td>
<td>(Alper, E., 1990)</td>
</tr>
<tr>
<td>0.1–0.5</td>
<td>Wetted wall column</td>
<td>303–313</td>
<td>4474</td>
<td>(Jimmy Xiao, C.W.L., Meng-Hui Li, 2000)</td>
</tr>
<tr>
<td>1–10</td>
<td>Laminar jet absorber</td>
<td>293–333</td>
<td>4.61 × (10^3) exp(−4412/T)</td>
<td>(Ahmed Aboudheir, P.T., 2003)</td>
</tr>
</tbody>
</table>

Abbreviation for table 2

- \(k\): Reaction rate for CO\(_2\) absorption in MEA (dm\(^3\)/mol s)
- T: Temperature (K)
- [MEA]: Concentration of Mono-Ethanol Amine

Experimental setup and test cases:

Figure 1 shows the systematic diagram of the absorption column used in the simulation of the experiment reported by (David deMontigny, A.A., 2004). In the experiment concentration of CO\(_2\) on each of the stages is measured and is recorded in the controller to know about CO\(_2\) concentration in the gas phase on each stage of the absorption column (David deMontigny, A.A., 2004). Sour gas enters into the column from the bottom of the column and sweet gas, after the removal of CO\(_2\), leaves the column from the top. Lean solution enters into the column from the top, interacts counter currently with the gas, and leaves the column from the bottom, when rich with CO\(_2\). The equipment mainly consists of an absorption column, 40 packed elements containing Sulzer DX structured packing. Packed column design details are shown in Table 3 and are taken as a base case for this study.

Absorption data from bench scale laboratory experiment is used as the basis of this study and to validate the results shown in this study (David deMontigny, A.A., 2004). In the experiment, gas stream consists of a mixture...
of air and CO$_2$, where the concentration of CO$_2$ varied from 5-20 % mol/mol. Lean amine solution is an aqueous solution of MEA, where the concentration of MEA is between 1 - 3 kmol m$^{-3}$. Sour gas flow rate is in the range of 5.4 - 12.6 m3 m$^{-2}$ h$^{-1}$ and the flow rate for lean amine solution was 30.9 kmol m$^{-2}$ h$^{-1}$. List of test cases studied in this study is given in table 2. Experimental results for this experimentation are taken from the work of (David deMontigny, A.A., 2004). The model presented in this study is not good enough to predict the results of the experiment at low liquid flow rates and low amine concentration in lean solution.

Table 3: Packet column Internals and Packing Design used for CO$_2$ absorption in amine solution.

<table>
<thead>
<tr>
<th>Description</th>
<th>Sulzer DX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing Data</td>
<td></td>
</tr>
<tr>
<td>Surface area</td>
<td>900 m2/m3</td>
</tr>
<tr>
<td>Crimp height</td>
<td>2.9 mm</td>
</tr>
<tr>
<td>Corrugation base</td>
<td>6.4 mm</td>
</tr>
<tr>
<td>Crimp angle</td>
<td>60$^\circ$</td>
</tr>
<tr>
<td>Void fraction</td>
<td>0.775</td>
</tr>
<tr>
<td>Packed column data</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>0.028 m</td>
</tr>
<tr>
<td>Number of packing elements</td>
<td>40</td>
</tr>
<tr>
<td>Element length</td>
<td>0.054</td>
</tr>
<tr>
<td>Total packing height</td>
<td>2.16 m</td>
</tr>
<tr>
<td>Total available surface area</td>
<td>1.20 m2</td>
</tr>
</tbody>
</table>

Fig. 1: Process flow diagram for CO$_2$ absorption.

Table 4 and Table 5 show test cases for studying the effect of initial CO$_2$ concentration in the sour gas. The concentration of CO$_2$ in sour gas was varied in the range of 5 - 20 mol %. Temperature and pressure for all the test cases were at 25°C and one atm as same operating conditions were considered in the experiments performed by (David deMontigny, A.A., 2004). Similarly, MEA concentration in the amine solution was also kept constant at 2.0 kmol/kmol. Kent-Eisenberg vapor liquid equilibrium model is used in this package to calculate CO$_2$ absorption in the amine solution (Kent, R., B. Eisenberg, 1976). Non-Ideal vapor phase model is used in this study because CO$_2$ diffusion in the gas phase and at gas liquid inter-phase has high resistance especially at low CO$_2$ concentration in the gas stream.

Table 4: Validation Test Cases for CO$_2$ absorption in MEA solution in a Sulzer DX Packed Column.

<table>
<thead>
<tr>
<th>Description</th>
<th>TC-1</th>
<th>TC-2</th>
<th>TC-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sour gas flow rate (m3 m$^{-2}$ h$^{-1}$)</td>
<td>30.9</td>
<td>30.9</td>
<td>30.9</td>
</tr>
<tr>
<td>Lean amine solution flow rate (kmol m$^{-2}$ h$^{-1}$)</td>
<td>5.4</td>
<td>6.7</td>
<td>8.4</td>
</tr>
<tr>
<td>MEA Concentration (kmol/m3)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CO$_2$ concentration in the sour gas (mol/mol)</td>
<td>14.23</td>
<td>14.35</td>
<td>14.38</td>
</tr>
</tbody>
</table>

Table 5: Validation Test Cases for CO$_2$ absorption in MEA solution in a Sulzer DX Packed Column.

<table>
<thead>
<tr>
<th>Description</th>
<th>TC-4</th>
<th>TC-5</th>
<th>TC-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sour gas flow rate (m3 m$^{-2}$ h$^{-1}$)</td>
<td>30.9</td>
<td>30.9</td>
<td>30.9</td>
</tr>
<tr>
<td>Lean amine solution flow rate (kmol m$^{-2}$ h$^{-1}$)</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>MEA Concentration (kmol/m3)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CO$_2$ concentration in the sour gas (mol/mol)</td>
<td>5</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

Abbreviation for table 4
TC-1 Test Case-1
TC-2 Test Case-2
TC-3 Test Case-3
MEA Mono-Ethanol Amine
RESULTS AND DISCUSSION

Table 4 shows three different validation cases for the experimental absorption of CO₂ into aqueous amine solution (Figure 2) (David deMontigny, A.A., 2006). Results obtained from this study and the study are shown in Figure 2 (a) along with the simulated results other researchers for some experimental data (TC-1) (David deMontigny, A.A., 2006; Henriques de Brito, U.v.S.M., 1994). Sulzer DX structured packing is used as packing material in the absorption column as Sulzer DX structured packing was used in the experimental study of CO₂ absorption, in MEA solution. Figure 2 (a) is a height vs. CO₂ concentration in gas phase profile, for different plate efficiencies and experimental data as mentioned in table 4. For all cases, initial CO₂ concentration in flue gas was 14.23 mol %. Flue gas enters the column from the bottom of the column and moves upwards in the column. When the flue gas comes in contact with lean solution, CO₂ in the gas stream starts to react with MEA present in the amine solution. Reaction rate for CO₂ absorption in MEA is fast (Gibbins, J., H. Chalmers, 2008). So, concentration of CO₂ in the flue gas readily decreases as more CO₂ in absorbed in the amine solution. CO₂ concentration in the gas stream reduces to almost zero before it exits to the atmosphere, from the top of the column. When the concentration of CO₂ in the gas stream is less than ~ 2%, CO₂ mass transfer into the amine solution becomes very low and the slope of CO₂ absorption curve for all the cases becomes steeper (Ashleigh Cousins, L.T.W., 2011; Maceiras, R., 2008). This trend can be explained on the basis of high reaction rate for CO₂ absorption in amine solution and gas / liquid film resistance (Joseph, D.E.G., 1961; Inna Kim, C.M.J., 2011).

When flue gas enters in the absorption column from the bottom of the column, it contains relatively high CO₂ concentration. Similarly, lean amine solution entering from the top of the column also contains high free MEA concentration. When gas and liquid stream interact with each other in the absorption column, there is a high mass transfer of CO₂ from the gas stream into the amine solution. As the gas moves upward in the column CO₂ concentration in the amine solution decreases as most of the CO₂ is already absorbed in the amine solution. Now, CO₂ from the gas stream have to move from the gas stream to the gas film and then have to pass from the gas film into the liquid film, where it can react with any free MEA solution. For this reason, more stages are required to remove the remaining portion of CO₂ in the amine solution. This increase in gas/liquid film resistance is not very much high as eventually all of the CO₂ from the gas stream is absorbed into the amine solution and CO₂ free flue gas exits from the top of the column.

Plate efficiency has a vital role in CO₂ absorption process, as it will decide the efficiency of the column. Many plate efficiencies for have been studied for different operating conditions and only two plate efficiencies are reported in this research. In TC-1 (test case-1) two plate efficiencies have been studied for CO₂ absorption study. It can be seen from Figure 2 (a) that for 20% plate efficiency, the simulated curve is closer to the experimental data than for 15% plate efficiency. For 15% efficiency, simulated curve is showing less CO₂ absorption and simulates curve is away from the experimental data. This shows that for these operating conditions, the packing efficiency of the column was 20%. Packing efficiency is a function of gas and liquid flow rates and diameter of the column.

Simulated results for TC-2 are shown in Figure 2 (b). Details of operating conditions for TC-2 are given in Table 4. In TC-2, there is an increase in CO₂ absorption process as the curve for simulation is steeper as compared to TC-1. However, gas liquid film resistance decreases with a relative increase in liquid flow rate. This also increases the process of CO₂ absorption at high liquid flow rates. Simulated curve for 20% plate efficiency is much close to the experimental results for TC-2. Figure 2 (c) shows the simulated and experimental results for TC-3 (Table 4). TC-3 has the highest liquid flow rate as compared to other test cases. With an increase in liquid flow rate, CO₂ absorption is also increased and complete removal is achieved with fewer stages of the absorption column. This is due to a reduced amount of gas and liquid film resistance and high absorption rates for CO₂ and MEA solution. This shows that packing efficiency for high liquid flow rate (8.4 kmol m⁻² h⁻¹) is higher than other liquid flow rates.

Effect of CO₂ concentration in the flue gas on overall absorption process is shown in Figure 3. Details of process parameters and operating conditions are enlisted in Table 5. This Figure 3 shows CO₂ removal from the flue gas along the height of the packed column for different CO₂ concentrations in flue gas. Overall height of the column required for CO₂ absorption is shown in Figure 3. This shows overall height of the column required for processes where the concentration of CO₂ varies in the gas stream. CO₂ concentration in the flue gas for this study was in the range of 5 - 18 mol % in sour gas. In all the cases, the overall efficiency of packing elements was set to 20 %. There are four curves in Figure 3 for TC-1, TC-4, TC-5 and TC-6. All other process parameters such as MEA concentration in the amine solution, flow rate for lean amine solution and sour gas stream were kept constant to observe the trend of CO₂ mass transfer from the flue gas (containing different concentrations.
CO\(_2\)) into the amine solution. Low transfer rates for flue gas containing less CO\(_2\) mol % is because with low CO\(_2\) concentration there is less chance of CO\(_2\) interaction with free MEA molecule in the amine solution. This is because there are more inter gas molecules to interact the CO\(_2\) molecule and this decreases the chance of CO\(_2\) collusion with the amine molecule. More packing stages are required to remove low CO\(_2\) concentration from the flue gas which reduces the overall efficiency of the process. For all the cases, the gas has to travel up to the middle of the column for total absorption into the amine solution. Reactions rates are same for all CO\(_2\) molecules and free MEA.

Fig. 2: Validation cases for CO\(_2\) absorption in MEA solution. (a) Simulation result for TC-1, (b) Simulation result for TC-2 and (c) Simulation result for TC-3.

Fig. 3: Effect of CO\(_2\) mole fraction in flue gas on overall CO\(_2\) removal from sour gas.
Effect of gas flow rate and liquid flow rate on CO₂ loading in the amine solution is shown in Figure 4 and Figure 5. Figure 4 is a function of gas / liquid flow rate for different gas flow rates while keeping the liquid flow rate constant as for TC-1. Increase in gas flow rate reduces the contact time available for Gas / Liquid Interaction and can reduce CO₂ capture efficiency if it is increased to very high values. However, in this study there is an increase in gas flow rate in a very small range and results obtained are different than the results achieved for a typical gas / liquid absorption process. Figure 5 shows a plot for CO₂ loading in the amine solution for different amine solution flow rates. This shows that there is a decrease in the absorption process with increase in amine solution flow rate. This can be attributed to low contact time available for gas / liquid interaction at high amine flow rates.

Fig. 4: Effect of Gas flow rate on overall CO₂ loading in Rich Amine Solution.

Fig. 5: Effect of Liquid flow rate on overall CO₂ loading in Rich Amine Solution.

Conclusion:

CO₂ absorption into aqueous MEA solution was simulated and compared for a lean amine solution flow rate in the range of 5.4 to 8.4 kmol m⁻² h⁻¹ and gas flow rate was kept constant at 30.9 m³ m⁻² h⁻¹ in a simulated absorption column filled with Sulzer DX as a packing. Wetting of the packing element is very important for CO₂ absorption so the process was simulated for different plate efficiencies. It was observed that the simulated results do perfectly match with experimental data. It is noticed in this research that CO₂ mass transfer into the amine solution is much higher when flue gas has high CO₂ concentration. However, more stages are required to remove the remaining small amount from the flue gas. It is also noticed that the absorption process increases with steady increase in gas flow rate while it decreases with increase in amine solution flow rate. It is concluded that there should be a balance in gas and liquid flow rate as low flow rate can reduce the wetting efficiency of the packing and very high flow rates can reduce the contact time gas gas-liquid interaction.
ACKNOWLEDGMENTS

Financial support through UMRG grants nos. RU003-2013 and RP017A-13EET is greatly acknowledged. We are also thankful to University of Malaya for providing different platform required to complete this research.

Appendix A:
Mass Balance in liquid phase:
Equation of continuity for one phase is given as:

\[
\frac{\partial}{\partial t} \left(\rho \right) + \nabla \cdot \left(\rho \mathbf{u} \right) = 0
\]

(13)

Where, \(\mathbf{u} \) represents velocity of fluid and \(\rho \) is density of the fluid. Multiplying equation 13 with a factor \(v_z \).

\[
\frac{\partial}{\partial t} \left(v_z \rho S \right) + \nabla \cdot \left(v_z \rho \mathbf{u} S \right) = 0
\]

(14)

Now introducing flow rate in equation 14 as \(F = \rho v_z S \):

\[
\frac{\partial}{\partial t} F + \nabla \cdot (F \mathbf{u}) = 0
\]

(15)

This is continuity equation in 3D. For, 1D equation and for liquid phase, 15 can be written as

\[
\frac{\partial}{\partial t} L + \frac{\partial}{\partial z} (L \mathbf{u}) = \text{source}
\]

(16)

Equation 16 represents continuity equation with only one phase. However, there is a phase change for all the components in CO\(_2\) absorption process. A new factor is introduced in equation 16 to modify continuity equation and to incorporate the phase change during CO\(_2\) absorption process.

\[
\frac{\partial}{\partial t} L + \frac{\partial}{\partial z} (L \mathbf{u}) = \text{source}
\]

(17)

The source term in equation 17 should have the same unit as for other terms in the equation (kg/m\(^3\).s). However, phase change occurs at the interface. So, interfacial area is to be considered in calculation of source term. Similarly, how much mass of each component is transferred from liquid to gas phase per unit time. Therefore, \(N \) (mol/m\(^3\).s) gives rate of change in liquid phase per unit time. The source term will also depend upon the molecular weight of the component, \(M \) and density \(\rho_L \). Therefore, expression for source term can be given as:

\[
\text{source} = \frac{v_z S \mathbf{N} M}{r_L}
\]

(18)

However, there are many components in the system with different physical properties so equation 18 is modified as:

\[
\text{source} = \frac{v_z S \mathbf{N} M}{r_L}
\]

(19)

Putting the value of source in equation 17:

\[
\frac{\partial}{\partial t} L + \frac{\partial}{\partial z} (L \mathbf{u}) = \frac{v_z S \mathbf{N} M}{r_L}
\]

(20)

This is the expression for mass balance for CO\(_2\) absorption process in liquid phase.

Mass balance for gas phase in CO\(_2\) absorption process
Mass balance expression for gas phase is obtained from continuity and can be given by modifying equation 20 as:
\[
\frac{q}{(F_c)} = \frac{q}{(F_{c,v})} + \frac{q}{(F_{c,v})} = \frac{V}{(N_c,M_c)}
\]

(21)

REFERENCES

Gabrielsen, J., 2007. CO2 capture from coal fired power plants, Technical University of Denmark, Lyngby.

Levente, Y.E., L. Simon, Graeme Puxty, Yuli Artanto, Konrad Hungerbuhler, 2011. Rate based modeling and validation of a carbon-dioxide pilot plant absorption column operating on monoethanolamine, chemical engineering research and design, 89: 1684-1692.

