A wound is a sharp injury that damages the dermal layer of the skin. There are two types of wounds: closed wound and open wound [1]. Wound healing from either accidental injury or surgical intervention involves the activity of a complex network of blood cells, tissues cytokines, and growth factors. Increased cellular activity is apparent in wound healing, thereby causing an increased metabolic demand for nutrients. The deficiencies in some nutrition factors such as vitamin A or C could impede the cellular differentiation, immune function and collagen formation leading to a delay in wound healing process [2]. Therefore, it is not surprising that the researchers continuously attempt to find drugs from natural sources in order to cure wounds [3]. Since more than 50% of proteins in scar tissues consist of collagen, collagen production is essential in the process of healing. Fibroblasts regulate the synthesis of collagen and other proteins throughout the repairing process [4]. Numerous cytokines, such as transforming growth factor beta (TGF-β), platelet-derived growth factors (PDGF) and epidermal growth factor (EGF), are responsible for fibroblast stimulation for collagen synthesis. Inflammation is a normal phase of the wound-healing process, being crucial in removing contaminating microorganisms. Both bacteria and endotoxins can lead to an extended increase of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1), prolonging thus the inflammatory phase. If this phase continues, the wound may reach its chronic

Wound-healing potential of the fruit extract of *Phaleria macrocarpa* was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL *P. macrocarpa* fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with *P. macrocarpa* fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly decreasing MDA level. The topical treatment with *P. macrocarpa* fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.

KEYWORDS: Antioxidant enzyme; inflammatory mediator; *Phaleria macrocarpa*; wound healing

DOI: http://dx.doi.org/10.17305/bjbms.2015.39

© 2015 ABMSFBIH
stage and may fail to heal. The prolonged inflammation can
lead to increased levels of matrix metalloproteinases, a fam-
ily of proteases that can reduce the extracellular matrix [5].
A series of studies showed that nitric oxide and reactive
oxygen species (ROS) are pivotal regulators of wound heal-
ing [6]. ROS are beneficial for protection from microbial
invasion; intracellular signal transduction requires a low
level of ROS. Furthermore, hydrogen peroxide at low lev-
els is essential for efficient wound angiogenesis. However,
excessive ROS is poisonous because of its high reactivity.
Hyperoxia and hypoxia both increase ROS production, but
increasing ROS level eliminates the beneficial effect of ROS
and can result in additional tissue damage [7].

Phaleria macrocarpa is a traditional medicinal plant
from New Guinea, Papua Island, and Indonesia. *P. macro-
carpa* grows throughout the year in tropical areas and
reaches a height of 1 m to 6 m. It is a tree with stems, leaves,
roots, flowers, and fruits. Its fruit has an ellipse shape and
is about 3 cm in diameter. The fruit is green before ripen-
ing and red when fully ripe [8]. *P. macrocarpa* has been
used to treat cancer, diabetes, ulcers and hypercholesterol-
emia [9–12]. Previous studies reported the isolation of many
active compounds from various parts of *P. macrocarpa*,
including phalerin, mangiferin, benzophenone glucopyra-
sides, mahkoside, kaempferol-3-O-β-D-glucoside, dodeca-
noic acid, and palmitic acid [13]. We aimed to investigate the
healing efficacy of *P. macrocarpa* fruit extract on excision
wounds of rats and to elucidate possible mechanisms under-
lying such healing effect.

MATERIALS AND METHODS

Plant extraction

Seedless *P. macrocarpa* fruits were harvested as voucher
specimens (SK1929/11) at the Selangor housing area in the
herbarium of University Putra in Malaysia. The *P. macro-
carpa* fruits were dried and crushed. The resulting powder
(100 g) was placed in a conical flask and soaked in 900 mL
95% ethanol for three days at room temperature (30 ± 2 °C).
The suspension was shaken intermittently for the powder to
dissolve completely in ethanol, thereby creating a dark brown
mixture. After three days, the mixture was filtered using a filter
paper (Whatman, 185 mm), and the filtrate was distilled under
reduced pressure in a rotary evaporator. The extract was kept
at -20 °C prior to use [14].

Animals

Healthy adult Sprague-Dawley (SD) rats weighing
250 - 300 g were obtained from the animal house unit of the
Faculty of Medicine in the University of Malaya, Malaysia. The
rats were maintained in wire bottom cages at 22 ± 3 °C and
50% to 60 % humidity under a 12 h–12 h light–dark cycle for at
least one week prior to the experiment. The cages were main-
tained according to standard housing conditions, and access
to standard diet and water was provided ad libitum during the
experiment. The experimental protocol was approved by the
animal ethics committee under Ethic No. PM 1 November 2011
MAA. All of the animal care criteria prepared by the National
Academy of Sciences and outlined in the Guide for the Care
and Use of Laboratory Animals were applied throughout the
experiment [15].

Experimental design

The adult female SD rats were randomly divided into
groups, with five rats in each group. Each rat was
housed separately. The animals were anesthetized. The skin
was shaved using an electrical shaver and disinfected with
70% alcohol. A uniform wound area with 2cm diameter
was excised from the napes of the rats using a round seal, as
described by Morton et al. [16]. Incision of the muscle layer
was avoided, and skin tension was kept constant during the
procedure. All rats were treated twice a day, as follows: the
vehicle control group was treated with 0.2 mL gum acacia;
the reference drug group was treated with 0.2 mL intrasite
gel; one of the treated groups was topically administered
0.2 mL of the 100 mg/mL plant extract; and the other treated
group was topically administered 0.2 mL of the 200 mg/mL
plant extract. Contraction of the wound area was measured
at days 0, 5, 10, and 15 after incision. At day 15, a high dose
of anesthesia was administered to all the experimental ani-
imals, and the skin from the healed wound area was excised
in order to obtain a homogenous tissue for histopathological
examination. Blood samples were also collected to measure
other parameters.

Histological evaluation of wound healing

A piece of skin from the healed wound area was fixed in
10% formalin and then dehydrated with increasing alcohol
concentrations in an automated tissue processing machine.
The processed tissue was embedded in paraffin for tissue
sectioning. A microtome was used to cut the tissue into
5 µm sections for staining with hematoxylin–eosin solu-
tions and Masson’s Trichrome stain according to standard
protocols [17].

**Measurement of TNF-α and TGF-β1 levels by
enzymelinked immuno sorbent assay (ELISA)**

The blood samples of the rats were collected in tubes. The
blood samples were allowed to clot for 30 min at 25°C
and were then centrifuged at 2000 x g for 15 min at 4 °C. The
serum was collected and preserved at -80°C prior to use. TNF-α and TGF-β1 levels were measured using ELISA kits [Thermo Scientific (Cat.# ER3TNFA) and Abnova (Cat.# KA0279 version: 04), respectively] according to the detailed instructions of the manufacturers. The assay had a sensitivity limit of ≤ 15 pg/mL and ≤ 7.8 pg/mL for TNF-α and TGF-β1, respectively.

Homogenate tissue sample preparations to determine superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels

To assess the levels of SOD (Cayman Item No. 706002), CAT (Cayman Item No. 707002), and MDA (Cayman Item No. 10009055) in the homogenate skin tissues, the skin tissues were weighed, minced, and homogenized on ice in 5 mL to 10 mL cold phosphate-buffered saline using a Teflon homogenizer. The homogenized mixtures were centrifuged at 10,000 × g for 15 min at 4 °C. The supernatants were collected in sterile tubes and maintained at -80 °C prior to use. The assays for SOD, CAT, and MDA were performed according to the detailed instructions of the manufacturers. Protein concentration was determined using the Bradford method, with bovine serum albumin as a standard [18].

Statistical analysis

Values were expressed as mean ± standard deviation. Statistical examination of data was performed using one-way ANOVA, and a Post Hoc LSD test was conducted to compare the treated groups with the control groups using a p-value ≤ 0.05 as a level of significance.

RESULTS

Wound contraction

Results from the macroscopic evaluation of wound healing rate on day 15 after incision revealed that the wounds dressed with *P. macrocarpa* showed considerable signs of dermal healing and significantly healed faster compared with the vehicle-treated control group (gum acacia in normal saline) as presented on Figure 1.

A measurement of wound healing progression showed that the plant extract induced wound healing (Figure 2). An excision wound margin was traced after wound creation using a transparent paper, and the wound area was measured using a graphing paper. Wound contraction was measured at 5-day-intervals until day 15. In the excision wound model, the wounds of the animal groups treated with 100 and 200 mg/mL *P. macrocarpa* fruit extract contracted by 25.6 ± 10.8 and 19.2 ± 8.7 mm², respectively, at significantly higher rates at day 15 (p ≤ 0.05) compared with the vehicle-treated control group (55 ± 10.3 mm²).

Histopathological evaluation of healed wound area

The histology of the wound tissues on the 15th day after wounding was evaluated. Wound enclosure was found to be smaller in the *P. macrocarpa* fruit extract-treated groups (Figure 3) and the granulation tissues contained comparatively less inflammatory cells and more collagen, fibroblast, and blood proliferating capillaries than the vehicle-treated control group, as revealed by Masson’s Trichrome staining (Figure 4).

FIGURE 1. Macroscopic appearance of excision wound healing area treatment (G1) 0.2 mL of vehicle control (gum acacia in normal saline); (G2) 0.2 mL Intrasite; (G3) 0.2 mL of 100 mg/mL of *P. macrocarpa*; (G4) 0.2 mL of 200 mg/mL of *P. macrocarpa*.
Assessment of TGF-β1 and TNF-α in the wounded rat undergoing treatment

TGF-β1 and TNF-α are important inflammatory cytokines for the wound-healing process. Therefore, in this study TGF-β1 and TNF-α levels in the treated groups were determined to evaluate the effect of *P. macrocarpa* fruit extract on inflammatory mediators. The groups treated with 100 and 200 mg/mL *P. macrocarpa* fruit extracts showed significantly increased TGF-β1 levels (42.06 ± 2.03 and 58.09 ± 1.74 pg/mL, respectively; *p* ≤ 0.05) compared with the control group treated with the vehicle (23.13 ± 1.24 pg/mL; Figure 5). By contrast, TNF-α levels significantly decreased in the groups treated with 100 and 200 mg/mL *P. macrocarpa* fruit extracts (112.3 ± 23.4 and 95.2 ± 9.4 pg/mL, respectively; *p* ≤ 0.05) compared with the control group treated with the vehicle (185.5 ± 28.1 pg/mL; Figure 6).

![Figure 2](image1.png)

FIGURE 2. Effects of *P. macrocarpa* on the progression of wound healing (wound area mm²) in rats (Data expressed as mean ± SD, 5 rats/group. (* Significant *p* ≤ 0.05) compared with vehicle control).

![Figure 3](image2.png)

FIGURE 3. Hematoxylin and eosin-stained sections of the wound at the 15th day after wounding in rats. (A) 0.2mL of vehicle, gum acacia in normal saline; (B) 0.2mL of Intrasite gel; (C) 0.2mL of *P. macrocarpa* (100mg/mL); (D) 0.2mL of *P. macrocarpa* (200mg/mL); S = Scab, E = Epidermis, GT = granulation tissue (magnification 20x).

SOD, CAT, and MDA levels in the healed wound area

The levels of antioxidant enzymes, SOD and CAT, and the natural product of lipid peroxidation, MDA, were estimated in this study to evaluate wound-healing progress and determine the effect of the *P. macrocarpa* fruit extract (Table 1). The results revealed that SOD and CAT levels significantly increased (*p* ≤ 0.05) in *P. macrocarpa* fruit extract-treated groups compared with the vehicle-treated control group. By

![Figure 4](image3.png)

FIGURE 4. Masson’s Trichrome staining of granulation tissue in the wound area of all animal groups at the 15th day after wounding in rats (G1) Skin dressed with vehicle shows more inflammatory cells; (G2) Skin dressed with Intrasite gel shows less inflammatory cells and more collagen produce compared to vehicle group; (G3) Skin dressed with 0.2 mL of *P. macrocarpa* 100 mg/mL; (G4) Skin dressed with 0.2 mL of *P. macrocarpa* 200 mg/mL show significantly decreased inflammatory cells and increase in the collagen production compared to vehicle (magnification 20x).

![Figure 5](image4.png)

FIGURE 5. Effects of *P. macrocarpa* on the TGF-β1 serum level in the treated wounded rats. Data expressed as mean ± SD, 5 rats/group (* Significant *p* ≤ 0.05 compared with vehicle control).

![Figure 6](image5.png)

FIGURE 6: Effects OF *P. macrocarpa* on the TNF-α serum level in the treated wounded rats. Data expressed as mean ± SD, 5 rats/group (* Significant *p* ≤ 0.05 compared with vehicle control).
TABLE 1. Effects of *P. macrocarpa* on the SOD, CAT activity and MDA level in the healed wound area at day 15 post-treatment in the rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD U/mg protein</th>
<th>CAT nmol/mg protein</th>
<th>MDA nmol/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle control</td>
<td>246.3±2.4</td>
<td>2030.7±713.1</td>
<td>6.0±4</td>
</tr>
<tr>
<td>Reference drug (intrisite gel)</td>
<td>290.1±16.4</td>
<td>3752.8±435.7</td>
<td>4.0±0.6*</td>
</tr>
<tr>
<td>P. macrocarpa 100 mg/mL</td>
<td>275.1±10.8</td>
<td>3451.7±717.8</td>
<td>4.2±0.7*</td>
</tr>
<tr>
<td>P. macrocarpa 200 mg/mL</td>
<td>298.3±27.3</td>
<td>4098.6±519.2</td>
<td>3.6±0.8*</td>
</tr>
</tbody>
</table>

Data expressed as means±SD, 5 rats/group (*Significant (p≤0.05)) compared with vehicle control.

contrast, MDA levels significantly decreased (*p < 0.05*) in *P. macrocarpa* fruit extract-treated groups compared with the vehicle-treated control group.

DISCUSSION

One of the main findings of this study considers topical application of *P. macrocarpa* fruit extracts on skin excision wounds in rats. The Study showed that topical application resulted in an improved wound contraction rate and considerable healing time reduction compared with that of the control group. These results may be attributed to the enhanced wound healing progression and the display of noticeable wound margin hydration resulting from tissue regeneration. Histological evaluation of the wound areas of treated groups confirmed the increase in cellular infiltration and angiogenesis and the increase in fibroblasts and collagen depositions. The mechanisms of topical *P. macrocarpa* action on the wound area, which were due to the chemotactic influence of the plant extract, may have attracted inflammatory cells. The mitogenic activity of the plant extract possibly increased cellular proliferation and significantly contributed to wound healing. *P. macrocarpa*-treated groups demonstrated significantly smaller wound areas at day 15 after wounding compared with the vehicle-treated control group.

TGF-β1 plays an important role as an inflammatory mediator in the initiation of wound healing by activating and stimulating macrophages to secrete cytokines that further act as fibroblast growth factors (PDGF, TNF-α, and interleukin-1). In the proliferative phase, macrophages secrete TGF-β1, T lymphocytes, and platelets. TGF-β1 is considered to be a major control signal that regulates fibroblast functions. TGF-β1 affects extracellular matrix precipitation by the following activities: enhancing the gene transcriptions for proteins essential in the production of matrix, mainly collagen, fibronectin, and proteoglycans; inhibiting the production of proteases, the enzymes that cause breakdown of extracellular matrix; and stimulating the metalloprotease inhibitor.

In this study, significantly increased TGF-β1 levels and significantly decreased TNF-α levels were observed in the *P. macrocarpa* fruit extract-treated groups compared with the vehicle-treated control group at day 15 after wounding. These results clearly indicate that the effect of the plant extract in accelerating wound healing is possibly due to the reduction of the inflammatory phase and its rapid transition to the proliferative phase, during which enhanced wound contraction was observed. To provide supplementary evidence for this suggestion, previous studies reported that during the second and third week of healing, fibroblasts started to adopt myofibroblasts phenotypic properties via large parcels of actin containing microfilaments, which are organized along the cytoplasmic cover of the plasma membrane, thereby establishing cell-to-cell and cell–matrix linkages. Many studies on the use of medicinal plants in treating wounds have reported the significant role of TGF-β1 in accelerating wound healing. *Eleutherine indica* extract accelerates wound healing by stimulating the release of TGF-β, which is bound to the fibroblast receptors and initiates TGF-β-Smad-mediated collagen production. Smad, which belongs to a family of proteins that interacts with TGF-β type I receptors, transduced receptor signals to specific target gene in the nucleus and directly interacts with activated TGF-β receptors. Similar results were produced in *Polygonum cuspidatum*-treated wounds. The results from immunohistochemical analyzes showed that TGF-β1 levels significantly increased in the groups treated with the plant extract at day 1, 3, and 7 after wounding.

ROS are deleterious to the wound healing process because of their harmful effects on cells and tissues. Free radical scavenging enzymes are cytoprotective enzymes that play essential roles in the reduction, deactivation and removal of ROS, as well as in the regulation of the wound healing. SOD converts superoxide to hydrogen peroxide, which is then transformed into the water by CAT in lysosomes. Previous studies have reported the antioxidant and anti-inflammatory properties of various plants, as well as their ability to induce antioxidant enzyme activities for the prevention or reduction of free radicals, thus a supportive evidence for this study.
treatment of various diseases, such as cancer, diabetes, atherosclerosis, hyperglycemia, and hypercholesterolemia [27].

CONCLUSION

Topical treatment with **Phaleria macrocarpa** fruit extract improved the activities of wound healing by reducing cellular damage and accelerating the wound healing process.

ACKNOWLEDGEMENTS

Authors thank University of Malaya, Malaysia for supporting this work by the research finance grant (PV.04/6/2012.A).

DECLARATION OF INTERESTS

The authors declare no conflict of interests.

REFERENCES

