with a change in oral ecosystem and microbial flora. Denture plaque has long been investigated for bacterial and fungal growths.

Objective: The objective of this study was to determine the presence of H. pylori in denture plaque of dyspeptic patients wearing complete dentures.

Methods: A total of sixty seven complete denture patients with age ranging between 50-65 years and a mean age of 57.5 (SD= 10.6 years) were included in the study. Among these 46 (68.65%) were males and 21 (31.34%) were females. Specimens of denture plaque and gastric biopsy were collected from all the patients. The denture plaque specimen was processed by Rapid Urease Test (RUT) and gastric biopsy specimens were processed both for RUT and histopathology.

Results: Out of all patients studied (n=67), 59 (88.05%) were H. pylori positive by Rapid Urease Test (RUT) from denture plaque specimens while 46 (68.65%) samples were H. pylori positive by RUT from gastric biopsy. The histopathology of gastric biopsy specimen showed H. pylori in 55 (82.1%) patients while 12 (17.9%) patients showed chronic active gastritis which was not associated with H. pylori.

Conclusions: This study reveals that the denture plaque and saliva may serve as a temporary reservoir for H. pylori in individuals with gastric disease. It is therefore suggested that meticulous denture hygiene procedures be performed, along with the antibiotic treatment of H. pylori.

EFFECT OF BRUCEA JAVANICA AND PIPER BETLE ON CANDIDA HYDROPHOBICITY

N. MOHD-AL-FAISAL, A.R. PATHILAH, and W.H. HIRMATUL-AZNITA
Department of Oral Biology, University of Malaya, Kuala Lumpur, Malaysia

Introduction: Cell surface hydrophobicity (CSH) is a key attribute of virulence among infectious microorganisms. An understanding of this property would help to explain the high colonization affinity of Candida species on oral surfaces and denture materials. Objective(s): The aim of the study is to determine the CSH of seven strains of oral Candida. The influence of crude aqueous (CA) Brucea javanica (Lour.) and Piper betle (Linn.) extracts on the CSH were assessed.

Materials and Methods: Seven oral candidal strains were investigated and hexadecane represented the hydrophobic compound in the experiment. Following vigorous agitation of each candidal suspension with hexadecane, the optical absorbance (OD) of each suspension was read. The percentage of adsorption to hexadecane was calculated. To investigate the effect of the extracts on the CSH, the candidal cells were treated with each extract at concentrations of 1.3 and 6 mg/ml. Positive control was 0.12% chlorhexidine.

Results: Candida krusei, Candida dubliniensis and Candida tropicalis showed the highest adsorption capacity to hexadecane at 30.23%, 26.19% and 19.70%, respectively, while the others were within the range of 7% to 10%. The CSH of all oral candidal strains were significantly affected following treatment with both plant extracts (p<0.05). The CSH of five out of seven candidal strains tested has shown that the B. javanica extract exhibited more than 60% reduction compared to P. betle.

Conclusion: Both extracts may be considered as a promising candidate for the development of antifungal agent of natural products, especially in controlling the adhesion of Candida species.

DIFFERENTIATION OF ORAL CANDIDA SPECIES BASED ON rDNA

R.A. ZAHIR, and W.H.A. WAN HARUN
Oral Biology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia

Introduction: Oral candida are considered to be generally harmless, ubiquitous members of the oral microflora, but can become pathogenic when there are changes in the oral environment, such as under conditions that allow them to increase their relative proportions to other members of the local flora.