Screening of Differential Promoter Hypermethylated Genes in Primary Oral Squamous Cell Carcinoma

Goot Heah Khor1,2,3,5*, Gabrielle Ruth Anisah Froemming2, Rosnah Binti Zain3, Mannil Thomas Abraham4, Kwai Lin Thong5,6*

Abstract

Background: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). Objectives: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR). Materials and Methods: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylations microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis. Results: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status. Conclusions: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

Keywords: Microarray - oral squamous cell carcinoma - promoter hypermethylation - MSPCR

Introduction

Oral cancer occupies the eighth position in the worldwide cancer incidence ranking (Moore et al., 2009). Oral Squamous Cell Carcinoma (OSCC) is a predominant type of oral cancer with 263,900 new oral cancer cases being diagnosed each year and 128,000 deaths annually. GLOBOCAN in 2008 reported that 65.4% of oral cancers occur in the less developed countries including China and Asia (Jemal et al., 2011). Despite significant efforts in oral cancer research and advanced treatments in surgery, radiotherapy and chemotherapy, overall survival rate of 5-year has remained less than 50% for the last few decades, and with an unexpected rising incidence in developed countries and among younger population (Scully and Bagan, 2007; Warnakulasuriya, 2009). The prognosis of OSCC remains poor essentially due to late diagnosis; thus justifying a greater interest and effort in identifying specific molecular markers that are potentially useful for the prevention and early diagnosis of OSCC (Scully et al., 2011). As for the 5-year survival rate for oral cancer, it was found to be directly associated to pathological stage at the time of diagnosis. Early diagnosis and immediate treatment then remain the main keys in decreasing the incidence and improving the overall survival rates of patients diagnosed with this disease (Scully, 2011).

An epigenetic phenomenon is a heritable alteration in the gene function without the sequence changes, which involved the enzymatic addition of methyl groups to deoxycytidine residues in CpG dinucleotides. Alterations in the established epigenetic patterns usually lead to changes in gene expression, which can cause transcriptional repression. The classic epigenetic mechanisms include DNA methylation, histone modification, chromatin remodelling and microRNA interference, which have been shown to be involved in post-transcriptional silencing (Herman and Baylin, 2003). DNA methylation is one of the epigenetic phenomena that occur at the molecular level involving regulation of cell of development and differentiation, aging, and diseases (Shaw, 2006; Supic, et al., 2009). Notably, most of the gene inactivation mechanism involved in cancer progression is the promoter hypermethylation of CpG islands (Kang et al., 2007; Noushmehret al., 2010). This
process is now widely recognized as either a causative or
correlative event in carcinogenesis (Herman and Baylin,

Recent computational approach into microarray
technology has enabled researchers to generate large
amounts of data which include approximately the entire
known human genome, and has shown that many gene
alterations can be involved in carcinogenesis (Bibikova
et al., 2004; Nazmul-Hossain et al., 2008; Kim and Kim,
2010; Jiang et al., 2014). In this experiment, a bead
array platform of microarray technology was applied for the
screening of methylation status of genes (Bibikova et al.,
2004), to discover the epigenetic signatures that
distinguish normal from tumour tissues of OSCC. This is
based on the premise that gene promoter hypermethylation
process in human DNA samples can be detected by using
qualitative methylation-specific PCR (MSPCR) method
(Herman et al., 1996). The advancement of this MSPCR
technique has demonstrated a simple, rapid and cost-
effective assessment for promoter methylation status.

Materials and Methods

Study population

Genomic DNA of four snapped frozen gingival
tissues surrounding impacted tooth from non-cancer
patients and twenty independent OSCC snapped frozen
tissues were obtained for microarray analysis. Forty
independent archival tissues of OSCC in formalin fixed
and paraffin embedded tissue blocks were chosen for
validating significant hypermethylated genes using
MSPCR. The selected healthy subjects were non-smokers,
non-alcoholics as well as non-betel quid chewers, with
no clinical lesions in their oral mucosa and who had not
previously undergone any anticancer treatment. They
were evaluated and enrolled in appropriate protocols in
the joint network of the Malaysia Oral Cancer Database
and Tissue Bank System (MOCDTBS) coordinated by the
Oral Cancer Research and Coordinating Centre
(OCRCC) after obtaining the subjects’ consent following
appropriate ethical committee approval from Medical
Ethics Committee of the Faculty of Dentistry, University
of Malaya (Ethic reference no: DF OP1101/0049 (L)). An
Oral Pathologist confirmed the histopathological findings
that all tumour samples used have contained more than
70% of squamous cell carcinoma tissues and more than
70% of epithelium from non-cancer patients.

DNA extraction from tissues

QIAamp® DNA Extraction Mini Kit (Qiagen,
Germany) was used for genomic DNA extraction of 0.1
mg snapped frozen specimen following the manufacturer’s
procedure. Purity of the extracted genomic DNA was
analyzed by NanoDrop Spectrophotometer ND-1000
(NanoDrop Technologies) and DNA intactness was
checked by 1% agarose gel electrophoresis. DNA purity of
the samples had an average absorbance ratio of 1.89±0.10.

Bisulfite-converted DNA

The extracted genomic DNA was bisulfite-converted
by using the EpiTect Bisulfite Kit (Cat. No.59104, Qiagen,
CA) following the manufacturer’s protocol. Briefly, 1 ng to
2µg extracted genomic DNA was chemically modified by
sodium bisulfite. Twenty µl of treated DNA was measured
by NanoDrop Spectrophotometer ND-1000 (NanoDrop
Technologies). The qualities of products were in range
of 50-100ng/µl.

Microarray assay

Microarray experiments were conducted on Infinium
Illumina methylation bead array. Two hundred nanogram
of total bisulphite converted DNA was applied on bead-based microarray following the manufacturer’s
protocol (Illumine, San Diego, USA). Briefly, the
bisulfite converted DNA was subjected to whole
genome amplification. The amplified products were then
enzymatically fragmented and applied to the chip, via
allele specific annealing to either the methylation specific
probe or the non-methylation probe. Hybridization step
was followed by single base extension. Then, multi-
layered immunohistochemical assays were performed.
After staining, the chip was scanned by BeadArray Reader
to show the intensities of the unmethylated and methylated
bead types (Bibikova et al., 2011).

Microarray data analysis

The raw data were analysed by GenomeStudio Data
Analysis Software (Illumine, San Diego, USA), and the
fluorescence intensity ratios between the two bead types
were calculated. Aratio value of 0 equals a non-methylation
of the locus; a ratio of 1 equals to total methylation. The
array signals were uploaded to the Illumina’s Genome
Studio software for background normalization and
filtered by β values for methylation levels (Bibikova
et al., 2011). Methylation level was defined as follows:
Hypermethylated and hypomethylated alleles as those
having an average β value of more 0.6 and below 0.4 of
the overall mean for all samples respectively. Differences
in average β values of differentially methylated probes
between normal subjects and patients were identified.
Only selected differentially hypermethylated probes in
OSCC patients that passed the filtration criteria were then
subjected to Partek Genomics Suite 6.5 analysis (Partek
Inc., USA) for gene selection. Three differential genes

<table>
<thead>
<tr>
<th>Genes</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Annealing temp (°C)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELSR3</td>
<td>5’TAGTATTAG</td>
<td>5’AAAAAATAACCC</td>
<td>5’GAGTATTAG</td>
<td>5’CCCAAAAAATTA</td>
<td>50</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>GGTTGCGTTTC3'</td>
<td>TCGAGAAGACCC3'</td>
<td>GGTTGCGTTTC3'</td>
<td>CCTCAACAAAAACC3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIKCR5</td>
<td>5’GTAGTATTGG</td>
<td>5’ACGAAATCAGC</td>
<td>5’GGTATAGTGGG</td>
<td>5’AAAACAATCACA</td>
<td>52</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>GGTATAGGTGGC3'</td>
<td>AAAACAAAAC3'</td>
<td>GGTATAGGTGGC3'</td>
<td>AAACAAAAAA3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP73</td>
<td>5’TGAGTATTGG</td>
<td>5’TCTTAAAATTA</td>
<td>5’TATAGAAGATGT</td>
<td>5’ACATCTTTAAA</td>
<td>55</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>CGATTAGTC3'</td>
<td>TGGCTGCAAT3'</td>
<td>GTGATGTTGT3'</td>
<td>ATCACATCAAT3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of TP73, PIK3R5, and CELSR3 were selected from the gene list based on the selection criteria form our previous experiment (Khor et al., 2013).

Methylation-specific polymerase chain reaction

The protocol was performed according to the manufacturer’s instructions (EpiTect MSP Kit, Qiagen, CA). Unmethylated and methylated DNA controls (Catalog NO. D5014, ZYMO, Orange, CA, USA) were used as negative and positive controls respectively, and double distilled water (ddH2O) was used as a blank control in all the experiments. Primers were designed using Methyl Primer Express Software v1.0 (Applied Biosystems, USA). The primer sequence, annealing temperature and amplicon size are shown in Table 1.

The bisulfite-converted DNA was subjected to PCR amplification using Eppendorf Mastercycler Gradient PCR (Germany) following these cycling conditions: Initial activation step was conducted at 95°C for 10mins; 35cycles of PCR, each with a denaturation step at 94°C for 15sec; annealing step at the Tm of primer, extension step at 72°C for 30s and the final extension was at 72°C for 10mins. 5µl of PCR products were loaded into 1% agarose gels, electrophoresed and visualized under the image analyser (Typhoon 9410 variable mode imager, Amersham Biosciences; Baied’Urfe, Quebec, Canada) after staining with SYBR Safe DNA gel stain (Invitrogen, USA).

Statistical analysis

The statistical analysis was analysed by descriptive test and one sample T-tests by SPSS software, version 17 (SPSS, Chicago, USA). The statistical difference was regarded as significant when p <0.05.

Results

Microarray analysis

In this study, mean methylation value differences between normal tissues in different stages of OSCC cases were obtained (Figure 1). The data obtained were further analysed by Partek Genomic Suite software. The data set was clustered using Principle Component Analyses (PCA). The cluster set of normal and tumour samples (stage I, II, III and IV) were clearly segregated in the PCA (Figure 2).

MSPCR analysis

The selected genes of CELSR3, PIK3R5 and TP73 were assessed using MSPCR in independent FFPE samples. The percentages of methylated alleles and unmethylated alleles for CELSR3, PIK3R5 and TP73 are shown in Table 6. The methylation status of the genes is shown in Figures 3, 4 and 5. The data were analysed using Microsoft Excel, to calculate the mean, median and standard deviation.
samples. Methylation status of each gene is shown in Figure 3, 4 and 5. There is statistically significant for hypermethylation of CELSR3 (p=0.000), PIK3R5 (p=0.003) and TP73 (p=0.000) respectively. The percentage of hypermethylation levels for CELSR3, PIK3R5, and TP73 genes were 87.5% (n=35), 80% (n=32), and 92.5% (n=37) respectively (Figure 6). These results correspond to the microarray data.

Discussion

The results demonstrated the demarcation between the 20 tumour and 3 normal samples using PCA analysis. It is concordant with results reported elsewhere (Bibikova et al., 2006; Nazmul-Hossain et al., 2007; Killian et al., 2012). This microarray approach provided a very comprehensive and high throughput data in genome wide study, which covered 99% of RefSeq genes. More than 450,000 methylation sites including promoter region of CpG islands and shores per sample at single nucleotide resolution are provided by this platform (Bibikova et al., 2011; Cheng et al., 2014). The recent advances in high-throughput microarray technologies have enabled investigators to study site-specific DNA methylation events on a much broader scale (O’Sullivan and Goggins, 2013). Many hypermethylation events in CpG islands near known genes transcriptional start sites, which correlated with reductions in gene expression have been identified. These approaches have lead to the discovery of hundreds of affected genes previously not identified, which potentially provide prognostic DNA methylation in cancer events (Noushmehr et al., 2010; Oster et al., 2011).

Verification of microarray results by MSPCR in the study showed that these results were reliable indicating methylation array analysis is very specific and useful in identifying the signature hypermethylated genes and helpful in understanding the roles of hypermethylated genes that are involved in oral carcinogenesis (Bibikova et al., 2006).

Methylation-specific analysis

DNA methylation plays an essential role in maintaining cellular function, and methylation aberrations may lead to carcinogenesis. Thus, several methods have been developed recently to analyse genes’ methylation status in human cells, depending on their detection strengths and weaknesses (O’Sullivan and Goggins, 2013). One of the methods is the MSPCR which applies specifically designed methylated and unmethylated primers for detecting the methylation level (Herman et al., 1996). It can be applied for distinguishing unmethylated from the methylated cytosine residues. As few as 1 to 10 tumour cells among 104 normal cells in clinical samples could be detected (Cottrell and Laird, 2003). It is a sensitive but not quantitative technique for the methylation level (Herman et al., 1996; Towle et al., 2012).

Further verification of candidate genes on a separate cohort of healthy and oral cancer population by MSPCR analysis has confirmed the hypermethylation in promoter region of existing biomarker of TP73, as reported by others (Jha et al., 2012) and new biomarkers of PIK3R5 and CELSR3. Confirmation of the gene methylation statuses using methylation specific technique, MSPCR in TP73, PIK3R5 and CELSR3 genes, which provides a reliability of the microarray data that shows 100% concordance (Weber et al., 2005).

The methylation frequency of promoter regions of TP73 is high in OSCC and has also been well documented in other cancer studies (Jha et al., 2012). The variation of gene expression frequencies in individual studies may be due to the different geographical origin, which suggests population differences (Jha et al., 2012; Syeed et al., 2012; Patel et al., 2013). In fact, frequency variation of gene hypermethylation can also be due to cancer heterogeneity in promoter methylation, such methylation alterations were generally not correlated with gene expression (Aryee et al., 2013).

However, direct comparison of OSCC to normal tissues by larger clinical samples in microarray assay will allow research to identify more hypermethylated-based biomarkers in OSCC in the near future. In addition, network analysis of protein-protein interaction may help to rule out dysregulation of transcriptional responses in oral carcinogenesis (Liu et al., 2013). This will provide critical insight into the differences found in oral malignancy and may also provide a new strategy in cancer prevention and develop a molecular targeted therapy.

In conclusion, TP73, PIK3R5 and CELSR3 hypermethylations were identified using microarray screening and gene-specific validation approaches. These genes may possibly become potential epigenetic biomarkers for OSCC as diagnostic, prognostic and therapeutic targets in the near future.

Acknowledgements

I would like to acknowledge the research grants, PS001/2010A and PV046-2011B provided by the University of Malaya, 600-RMI/DANA/5/3/RIF (633/2012) by the Universiti Teknologi MARA (UiTM) and the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education, Malaysia. We thank for the Oral Cancer Research and Coordinating Centre (OCRCC), the University of Malaya for providing the tissues and data from the Malaysia Oral Cancer Database and Tissue bank System (MOCDTBS). We are grateful to Dr Mariam Mohamad of Population Health and Preventive Medicine Department, Medical Faculty, UiTM for her invaluable advice in the statistical analysis. We acknowledge the Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, UiTM, Malaysia for providing laboratory facilities.

References

Promoter Hypermethylated Genes in Primary Oral Squamous Cell Carcinoma

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.xx.XXXX
