BDV-PO 08
Community structure of manglicolous marine fungi on decaying intertidal *Nypa fruticans* in east coast and west coast of Peninsular Malaysia

**Nor, N.A.M.**, Alias, S.A.¹ ², Jones, E.B.G. ², Pang, K.L.³

¹Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
²Institute of Ocean and Earth Sciences, Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
³Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 202-24, Taiwan (R.O.C)
**E-mail:** norailatulasikin@gmail.com

*Nypa* palm is a very distinct mycota mangrove host where a large distinct mycota is found. *Nypa* palm offered a very interesting microhabitat with combination of terrestrial and marine milieu. Fungal communities on decaying fronds base, leaves and rachides of *N. fruticans* were examined for fungi. Samples were collected from the intertidal region of the west coast Peninsular Malaysia (Kuala Selangor, Kuala Sungai Baru and Tanjung Karang) and the east coast Peninsular Malaysia (Kijal, Tanjung Lumpur and Tioman Island). Fungal identification was done based on morphological characteristics and cultures were kept for further molecular identification. Univariate and multivariate analysis were used to calculate and compare the diversity of marine fungi on different part of *Nypa* substrates. Seventy-six fungi, including 54 ascomycetes, 17 asexual fungi and 5 basidiomycetes were recorded from 540 samples examined. In this survey, 33 records were identified to species level, 9 to generic level while 34 records were unidentified. The most frequent species (>10% occurrence) were *Neolomicarpum nypicola* and *Pestalotiopsis gaepini* with 11.0% respectively. The greatest number of fungi was found in Kijal with 32 species, followed by Tanjung Lumpur (29), Tanjung Karang (25), Kuala Selangor (23), Kuala Sungai Baru (22) and Tioman Island (17). Sorensen’s similarity indices showed that the most similar species was between Tanjung Karang and Tanjung Lumpur with 0.56. The substrate, *Nypa fruticans* host promising potential in terms of its marine fungal biodiversity. The study has improved knowledge in manglicolous marine fungal and contributed to Malaysian fungal checklist.