Synergistic Effects of Alcoholic Extract of Sweet Basil (Ocimum basilicum L.) Leaves and Honey on Cutaneous Wound Healing in Rats

I. Salmah, A.A. Mahmood and K. Sidik
Department of Molecular Medicine, Faculty of Medicine, University of Malaya
50603 Kuala Lumpur, Malaysia

Abstract: Wound healing activities of sweet basil was studied on cutaneous excision wounds in rats. Three groups of male Sprague Dawley rats each consist of 6 animals. Rats were placed individually in cages and all animals were experimentally wounded in the posterior neck area. Pure un-boiled honey was applied topically to wounds of Group 1 animals. Wounds of Group 2 rats were treated with honey in combination with O. basilicum L. alcoholic leaf extract and solcoseryl - jelly was applied topically to wounds of Group 3 animals. The effects of vehicles on the rate of wound infections and on the rate of wound healing were assessed. Wounds of all groups of animals showed clean and remain sterile throughout the experiment. Wounds treated with honey in combination with plant extract and those treated with solcosery - jelly significantly (p<0.05) accelerates wound healing compared to wounds treated with honey alone. These results strongly documented the beneficial effects of plant extract for the acceleration of wound healing process and the rates of wounds sterility.

Key words: Honey, wounds healing, rats, Ocimum basilicum extract, solcoseryl - jelly

INTRODUCTION

Burn trauma and wounds are still a major problem in developing countries, often having severe complications and involving high costs for therapy. An important aspect of the use of traditional medicinal remedies and plants in the treatment of burns and wounds is the potential to improve healing and the same time to reduce the financial burden. Several plants and herbs have been used experimentally to treat skin disorders, including wound injuries, in traditional medicine[1-3].

Sweet basil (Ocimum basilicum L.) is a popular culinary herb and its essential oil has been used for many years to flavour foods, as an ingredient of dental and oral health care products and in fragrances[4]. In addition, basil essential oils have been reported to have potent anti-HIV-1 activity[5], anti-ulcer[6], anti-inflammatory activity[7], anti-microbial[8], antioxidant activity[9] and analgesic[10] properties without any noticeable toxicity. It has also been demonstrated that the anti-microbial activities of essential oils of different species of Ocimum were predominantly associated with the main constituents of linalool and methyl chavicol (estragole)[9,11]. Moreover, Basil leaf extract was highly effective in inhibiting carcinogen-induced tumor induced in both the tumor models at perinitational level[9].

Honey has long been used to accelerate wound healing[15-19]. Existing literature attributes honey with a number of useful properties, such as a broad-spectrum anti-microbial activity, deodorization, debriding and anti-inflammatory actions and stimulation of new tissue growth[20,21]. Honey, for the most part, is made up of simple sugars and is an excellent source of energy. It is hyper tonic and has been shown to be sterile and highly bactericidal[22,23]. Honey has been found, when applied locally, to reduce infection and promote wound healing[24]. Physiological properties of honey such as hyper tonicity, low pH (3.6) and hygroscopicity were thought to augment the healing process. Antibacterial effects were also attribute to these elements[21,22]. The wound healing properties of honey have been cleansing, absorption of edema, antibacterial activity, deodorization, promotion of granulation, tissue formation and epithelialization and improvement of nutrition[21,22].

Solcoseryl is a protein-free, standardized haemodialysate derived from calf blood, which has been shown to improve wound healing is well documented[24-26]. Experimental studies of the mechanism of action[25,27] have indicated that solcoseryl stimulates wound healing by enhancing the development of new capillaries, thereby improving the microcirculation and nutrition of ischaemic tissue. In biochemical study[21] were able to show a stimulatory effect on several aspects of granulation tissue formation, including vascularization,

Corresponding Author: Salmah, I., Department of Molecular Medicine, Faculty of Medicine University Malaya, 50603 Kuala Lumpur Malaysia

220
cellularity and the subsequent accumulation of collagen. A positive effect on wound healing has been described in a number of clinical reports[18,19].

The aim of the present study was carried out to assess the synergic effects of honey in combined with alcoholic extracts of O. basilicum L. on the rate of wound-healing process and on the rate of infection in rats.

MATERIALS AND METHODS

Honey: Pure, unprocessed, un-boiled commercial honey was obtained from Faculty of Agriculture, University Putra Malaysia, Serdang Selangor Malaysia, was used for the present study.

Experimental animals: Sprague Dawley rats were obtained from the animal house, Faculty of Medicine, University of Malaysia. The rats were divided randomly into 3 groups of 6 rats each. Each rat that weighted between 180 - 200 gm was housed separately (one rat per cage). The animals were left for 48 h to acclimatize to the animal room conditions and were maintained on standard pellet diet and tap water.

Experimentally induced wounds: An area of tissue 2 by 2 cm was excised from the rape of the neck, in previously shaved, disinfected with 70% alcohol and injected with 1 ml of Lignocaine HCl (2%, 100 mg/5 ml), to the depth of the muscle, avoiding incision of the muscle layer itself. A fresh surgical blade was used for the perpendicular cut in each animal and tension of skin was kept constant during the procedure.

Topical application of vehicles: A thin layer of pure, un-boiled commercial honey was applied topically twice daily to Group 1 animals. Group 2 rats were treated with a thin layer honey in combined with alcoholic leaves extract (10% of leaves extract in honey w/w) applied topically twice daily dressing, whereas a thin layer of solcoseryl - jelly was topically applied twice daily to Group 3 wounds as positive control animals (reference).

Bacterial isolation: Bacterial culture determination was performed in all wounds on day 3 after experimentally induced wounds. The swabs were taken from the surface of wound for culture before starting treatment. Later on day 7 another wound swab was taken for culture from all wounds. The swabs were cultured on Brain Heart Infusion (BHI) agar overnight at 37°C for any bacterial growth.

Statistical analysis of data: Results were expressed as mean + M.S.E. The statistical difference between the groups in the term of the mean rate of wound healing and rate of infection was calculated by using Student's t-test.

RESULTS

Rate of infection: No bacteria were isolated from swabs cultured (BHI) agar in experimental animals wounds on day 3 and day 7 before dressing with honey alone, honey in combined with plant extract and solcoseryl - jelly treated animals (Table 1).

Rate of healing: The results obtained indicate the existence of anti-microbial compounds in the honey alone, honey in combined with plant extract and solcoseryl - jelly. Wounds treated with honey in combined with plant extract and wounds treated with solcoseryl - jelly showed considerable signs of dermal healing and significantly (p<0.05) healed earlier than those treated with honey alone (Group 1) (Table 1). There were no significant differences between honey in combination with plant extract and solcoseryl - jelly in the term of wound healing duration. In addition dermal wounds treated with honey in combined with plant extract and wounds treated with solcoseryl - jelly were rapidly replaced by granulation tissue and advancing epithelialization and the diameters of wounds become narrow gradually.

<table>
<thead>
<tr>
<th>Animal groups</th>
<th>Type of dressings</th>
<th>Healing time (days) (Mean + M.S.E)</th>
<th>Bacterial isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Honey alone</td>
<td>16.5 ± 0.43</td>
<td>-</td>
</tr>
<tr>
<td>Group 2</td>
<td>Honey + extract</td>
<td>13.17 ± 0.31*</td>
<td>-</td>
</tr>
<tr>
<td>Group 3</td>
<td>Solcoseryl - jelly</td>
<td>12.83 ± 0.31*</td>
<td>-</td>
</tr>
</tbody>
</table>

*p<0.05 significant from control (Group 1)

DISCUSSION

The majority of the world's population relies on traditional medicine for their health care. This is also the case in the treatment of wounds. In developing countries, remedies prepared from herbal plants have been widely used for the treatment of soft tissue wounds and burns by medical personnel trained in western medicine as well as by traditional practitioners. The results of the current study showed that the usage of honey in combination with O. basilicum plant extract and the solcoseryl - jelly as topical applicants significantly (p<0.05) accelerated wound healing compared to honey alone. Wounds pretreated with honey alone, honey in combination with plant extract and solcoseryl – jelly, as a topical application maintained sterility of wounds until complete healing in whole animals. O. basilicum L. and other Ocimum species were generally had anti-microbial activity[10,11].
The anti-microbial activity of essential oils from *Ocimum* species was predominantly associated with the main constituents linalool and methyl chavicol, the anti-microbial effect of basil oil against Gram-positive and Gram-negative is bactericidal[12,25].

Results in the present study also showed that wounds treated with *O. basilicum* extract in combination with honey accelerate the rate of wound healing. Flavonoids from leaves of sweet basil have shown significant protection against radiation lethality and chromosomal aberrations *in vivo*. The radioprotection seems to be associated with antioxidant activity[24]. Rosmarinic acid, natural phenolic compound in sweet basil, would suppress the proliferation of mesangial cells and glomerular matrix expansion *in vivo* by its fibrinolytic and antioxidant activity. These results suggest that basil essential oil could be beneficial component of preventing infection and enhanced wound healing.

The wound healing properties of honey had been well documented[13,14,15]. Topical application of honey has been recognized for a long time to be effective in controlling infection and producing a clean granulating wound bed. Honey acts mainly as a hyperosmolar medium and prevents bacterial growth. The high sugar content of honey renders the honey hyperosmolar. Due to this effect, it causes rapid absorption of edema fluid from the soggy weeping wounds. The viscosity of honey is high and it forms a physical barrier that prevents bacterial colonization of wounds and creating a moist environment, which appears to be a helpful and accelerates wound healing[14,15,16]. The nutrient contents of the honey such as lactic acid and fructose improve local substrate supply and may help promote epithelialization[16,17]. Honey seems to cause more rapid epithelialization, presumably because of antibacterial properties as compared to control. The enzyme catalase present in honey has an antioxidant property[18,19] and thus honey may have a role as an anti-oxidant in thermal injury[20,21].

CONCLUSIONS

In conclusion, the synergic effects of honey in combination with alcoholic extract of *O. basilicum* appeared to have several important properties that make it useful ideal as a dressing agent for wounds. We can suggest that it may be possible to use honey in combination with *O. basilicum* alcoholic extract as topical application for the treatment of wounds. However, further investigations are required to elucidate their exact mechanism(s) of wound healing activity.

ACKNOWLEDGEMENTS

This study was financially supported by the University of Malaya through the grant 06-02-03-1026 (Oracle 8851026).

REFERENCES

