This Issue is Dedicated to
Professor Dr Wilhelm Fleischhacker
On the Occasion of his 85th Birthday

ISSN 1934-578X (printed); ISSN 1555-9475 (online)
www.naturalproduct.us
EDITOR-IN-CHIEF
DR. Pawan K. Agrawal
Natural Product Inc., 7963, Anderson Park Lane, Westerville, Ohio 43081, USA
agrawal@naturalproduct.us

HONORARY EDITOR
PROFESSOR GERALD BLUNDEN
The School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT U.K.
aga64@dsl.pipex.com

EDITORS

PROFESSOR ALEJANDRO F. BARRERO
Department of Organic Chemistry, University of Granada, Campus de Fuente Nueva, s/n, 18071, Granada, Spain
abarre@ugr.es

PROFESSOR MAURIZIO BRUNO
Department STEBICEF, University of Palermo, Viale delle Scienze, Parco d’Orleans II - 90128 Palermo, Italy
maurizio.bruno@unipa.it

PROFESSOR DE-AN GUO
National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
gdu5958@163.com

PROFESSOR VLADIMIR I. KALININ
G.B. Eluykov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letnya Vladivostoka 159, 690022, Vladivostok, Russian Federation
kalininv@gibop.dvo.ru

PROFESSOR YOSHIHIRO MIMAKI
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hongo, Bunkyo-ku, Tokyo 113-8657, Japan
mimaki@jip.touhoku.ac.jp

PROFESSOR MICHAEL P. SCHUMACHER
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
michaels@alumni.ubc.ca

ADVISORY BOARD

Prof. Viqar Uddin Ahmad
Karachi, Pakistan

Prof. Giovanni Appendoardo
Novara, Italy

Prof. Yoshinori Asakawa
Tokushima, Japan

Prof. Roberto G. S. Berlinger
São Carlos, Brazil

Prof. Anna R. Bilia
Florence, Italy

Prof. Josep Coll
Barcelona, Spain

Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Fatih Demirci
Eskişehir, Turkey

Prof. Francesco Epifano
Chiетi, Sclavi, Italy

Prof. Ana Cristina Figueiredo
Lisbon, Portugal

Prof. Cristina Gracia-Viguera
Murcia, Spain

Dr. Christopher Gray
Saint John, NB, Canada

Prof. Dominique Guillaune
Reims, France

Prof. Duuvurk Gunasekar
Tirupati, India

Prof. Hisahiro Hagiwara
Niigata, Japan

Prof. Judith Hohmann
Szeged, Hungary

Prof. Tsukasa Iwashina
Tokubasa, Japan

Prof. Leopold Jirovetz
Vienna, Austria

Prof. Phan Van Kiern
Hanoi, Vietnam

Prof. Niel A. Koortbanally
Durban, South Africa

Prof. Chikako Kuroda
Tokyo, Japan

Prof. Harri Rutenschot
Cottangen, Germany

Prof. Marie Lacaille-Dubois
Dijon, France

Prof. Shi-Hsing Lee
Taipei, Taiwan

Prof. Imre Mathe
Szeged, Hungary

Prof. M. Soledade C. Pedras
Saskatoon, Canada

Prof. Luc Pieters
Antwerp, Belgium

Prof. Peter Proksch
Ditzeldorf, Germany

Prof. Phila Raharivelomananana
Tahiti, French Polynesia

Prof. Luca Rastrelli
Ficino, Italy

Prof. Stefano Serra
Milano, Italy

Dr. Bikram Singh
Palampur, India

Prof. John L. Sorensen
Manitoba, Canada

Prof. Johannes van Staden
Scottsville, South Africa

Prof. Valentin Stonik
Vladivostok, Russia

Prof. Ping-juan Sung
Pingtan, Taiwan

Prof. Winston F. Tinto
Barbados, West Indies

Prof. Sylvia Urban
Melbourne, Australia

Prof. Karan Valant-Vetschera
Vienna, Austria

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2016 subscription price: US$2,595 (Print, ISSN# 1934-578X); US$2,595 (Web edition, ISSN# 1555-9475); US$2,995 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Identification and *in vitro* Evaluation of Lipids from Sclerotia of *Lignosus rhinocerotis* for Antioxidant and Anti-neuroinflammatory Activities

Neeranjini Nallathamby, Lee Guan Serm, Jegadeesh Raman, Sri Nurestri Abd Malek, Sharmili Vidyadaran, Murali Naidu, Umah Rani Kuppusamy and Vikineswary Sabaratnam

Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Immunology Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia

Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

viki@um.edu.my

Received: February 5th, 2016; Accepted: May 18th, 2016

Lignosus rhinocerotis (Cooke) Ryvarden (Tiger milk mushroom) is traditionally used to treat inflammation triggered symptoms and illnesses such as cough, fever and asthma. The present study evaluated the *in vitro* antioxidant, cytotoxic and anti-neuroinflammatory activities of the extract and fractions of sclerotia powder of *L. rhinocerotis* on brain microglial (BV2) cells. The ethyl acetate fraction had a total phenolic content of 0.30 ± 0.11 mg GAE/g. This fraction had ferric reducing capacity of 61.8 ± 1.8 mg FSE/g, ABTS•+ scavenging activity of 36.8 ± 1.8 mg TE/g and DPPH free radical scavenging activity of 21.8% ± 0.7. At doses ranging from 0.1 µg/mL – 100 µg/mL, the extract and fractions were not cytotoxic to BV2 cells. At 100 µg/mL, the crude hydroethanolic powder of *L. rhinocerotis* had ferric reducing capacity of 61.8 ± 1.8 mg FSE/g, ABTS•+ scavenging activity of 36.8 ± 1.8 mg TE/g and DPPH free radical scavenging activity of 21.8% ± 0.7. At doses ranging from 0.1 µg/mL – 100 µg/mL, the extract and fractions were not cytotoxic to BV2 cells. At 100 µg/mL, the crude hydroethanolic extract had the highest ferric reducing ability of 68.7% and 58.2%, respectively. Linoleic and oleic acids were the major lipid constituents in the ethyl acetate fraction based on FID and GC-MS analysis. Linoleic acid reduced nitric oxide production and down regulated the expression of neuroinflammatory iNOS and COX2 genes in BV2 cells.

Keywords: Anti-neuroinflammation, *Lignosus rhinocerotis*, BV2 Cells, Lipid component, Linoleic acid, Oleic acid, Antioxidant.

Mushrooms are consumed globally and are valued not only for their unique taste and flavor but also for their high medicinal and nutritional properties [1]. In recent years, the search for mushrooms is focused on ethnomedicinal knowledge. In Malaysia, the indigenous communities use many species of mushrooms such as *Amauroderma* sp., *Lignosus rhinocerotis* (Cooke) Ryvarden, *Pycnoporus sanguineus* (L.) Murrill and *Termitomyces clypeatus* (R.) Heim as food and/or medicine [2]. Many of these species are used to treat a number of ailments related to inflammation such as fever, cough, cold, epilepsy and asthma [2].

L. rhinocerotis can be found in small geographic regions encompassing South China, Thailand, Malaysia, Indonesia, Philippines, Papua New Guinea, New Zealand, and Australia [3]. In Malaysia, this mushroom is also known as “cendawan susu rimau”, which translates to tiger milk mushroom. *L. rhinocerotis* has more than 15 traditional uses including treatment or prevention of cancer, fever, cough, asthma, hunger, food poisoning, wounds and it is also used as a general tonic [4]. Asthma, fever and cough are attributes of inflammation.

Recent *in vitro* and *in vivo* studies supported the medicinal properties including the anti-inflammatory activities of the aqueous extract *L. rhinocerotis* (Table 1). To date, however, there are no reports on the anti-neuroinflammatory activities of solvent extracts. Therefore, this study aimed to investigate the hydroethanolic extraction of the sclerotia of *L. rhinocerotis* and its fractions. The extracts and fractions were examined to determine their chemical composition, antioxidant activities, cytotoxicity and effect on nitric oxide production in microglial cells.

<table>
<thead>
<tr>
<th>Medicinal properties</th>
<th>Active extracts</th>
<th>Cell line</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-cancer</td>
<td>cold aqueous</td>
<td>breast (MCF 7) and lung (A549 cancer leukemia (HL-60, K562 and THP-1))</td>
<td>[5]</td>
</tr>
<tr>
<td>Immunomodulating</td>
<td>Polysaccharides</td>
<td>Immune cells</td>
<td>[7]</td>
</tr>
<tr>
<td>Neurite outgrowth</td>
<td>hot aqueous</td>
<td>PC 12</td>
<td>[8,9]</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>cold aqueous, hot aqueous and methanol</td>
<td>N2a and BALB/3T3</td>
<td>[10]</td>
</tr>
<tr>
<td>Anti-inflammatory</td>
<td>cold aqueous, hot aqueous and methanol</td>
<td>carrageen induced paw edema in Sprague Dawley rats</td>
<td>[12]</td>
</tr>
</tbody>
</table>

The highest TPC was observed in the crude hydroethanolic extract (0.4 ± 0.1 mg GAE/g extract). However, the *n*-hexane and ethyl acetate fractions contained low TPC of 0.1 ± 0.0 and 0.3 ± 0.1 mg GAE/g extract, respectively. The FRAP assay showed that the hydroethanolic extract had the highest ferric reducing ability of 122.6 ± 4.8 mmol FSE/g extract. The ABTS•+ scavenging activity was expressed in terms of TEAC. The higher the TEAC value, the more potent the radical scavenging effect. The most potent radical
scavenger was the hydroethanolic extract with 86.5 ± 4 mg TE/g and the least potent extract was the n-hexane fraction with only 30.9 ± 5.3 mg TE/g. At a concentration of 5 mg/mL, the hydroethanolic extract showed the highest DPPH radical scavenging activity of 29.4 ±1.7% followed by the ethyl acetate fraction (21.8±0.7%) and n-hexane fraction (17.2 ±1.2%).

This study demonstrated that the hydroethanolic extract and its fractions (n-hexane and ethyl acetate fractions) possessed free radical reduction and scavenging activities. However, each extract showed different in vitro assay patterns, probably due to the different mechanisms involved in the steps of the oxidation process. Some studies found a correlation between the phenolic content and the antioxidant activities, while others did not [13-15].

In this study the hydroethanolic extract and ethyl acetate fraction showed high ABTS+ (36-86 mg TE/g extract) and DPPH (21-30%) scavenging activities and free radical reduction (61-122 mg FE/g extract), but the antioxidant activities were not correlated with its total phenolic content. Hassimotto et al. [13] also reported that the antioxidant activity of vegetable and fruit extracts did not correlate with either phenolics or vitamin C content. Thus, other non-phenolic compounds such as fatty acids may also be responsible for the antioxidant activity observed in the hydroethanolic extract and ethyl acetate fraction. Li et al. [16] also reported that the ethanolic extract of Corpinus comatus mushroom possessed higher antioxidant activity compared with its hot water extract.

The effects of various concentrations of the hydroethanolic extract and fractions of L. rhinocerotis on the viability of BV2 cells determined by the MTS assay are given in Figure 1. The cell viability of the positive control (untreated BV2 cells) was denoted as 100%. The crude extract/fractions were not cytotoxic to BV2 cells at concentrations up to 100 μg/mL. However, at 1000 μg/mL all extracts tested were cytotoxic to the BV2 cells. A dose-dependent increase in the viability of cells treated with the extracts was observed at concentrations ranging from 0.1 to 100 μg/mL followed by a dose-dependent decrease from 100 to 1000 μg/mL. An increase of 4-10% in viable cell number was seen in BV2 cells treated with 10 μg/mL of each extract tested. However, there was no significant (p<0.05) difference in cytotoxic effects at concentrations 0.1 μg/mL – 100 μg/mL compared with the positive control. Hence, in all subsequent assays, 1000 μg/mL concentration of extract/fractions was omitted.

Lee et al. [5] demonstrated that L. rhinocerotis cold water extract (LR-CW) did not show significant cytotoxic effect on human normal breast and lung cell lines (184B5 and NL 20) at concentrations ranging from 15.6 to 1000 μg/mL. However, anti-proliferative activity against both MCF-7 and A549 cancer cell lines was exhibited. The concentrations used were similar to the range of concentration used in the present study. Further, 0.1-100 μg/mL concentrations were used in this study to determine the anti-inflammatory effects on BV2 cells.

The effect of L. rhinocerotis crude extract/fractions (0.1 to 100 μg/mL) on NO production by LPS stimulated BV2 cells is presented in Figure 2. The LPS stimulation of the cells resulted in an increase in NO production (39.1 ± 0.8 μM) compared with the unstimulated cells basal levels (0.7 ± 0.2 μM). L-NNAME, a commercial nitric oxide suppressant, was used as a positive control at 200 μM. It was able to suppress 50% of NO production in the LPS induced BV2 cells. A dose dependent inhibition of NO production from 14% to 69% in BV2 cells occurred when cells were treated with the hydroethanolic extract at concentrations from

In general, inflammation is a naturally occurring reaction in the body in response to trauma, infection and tissue injury [17]. Although activated microglia scavenge dead cells from the CNS and secrete different neurotrophic factors for neuronal survival, overproductions of activated microglia may lead to neuronal death and brain injuries [18]. The activated cells also increase the secretion of various pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines. Nitric oxide, a short-lived free radical produced from L-arginine by nitric oxide synthase (NOS), mediates [19] a variety of pathophysiological actions ranging from vasodilatation, neurotransmission, inhibition of platelet adherence and aggregation, as well as the macrophage- and neutrophil-mediated killing of pathogens [20]. Overproduction of these mediators is responsible for inflammation. Therefore, inhibition of proinflammatory mediator(s) is beneficial in attenuating an inflammatory disorder. In the last few decades, evidence suggests that excessive NO production may play a role in neurodegenerative diseases.
The hydroethanolic extract and its ethyl acetate fraction significantly (\(p < 0.05 \)) inhibited (> 60%) NO production compared with the control. These extracts also showed significant (\(p < 0.05 \)) antioxidant properties. A study with *Tricholoma matsutake* Sing (pine mushrooms) showed that the ethyl acetate fraction exhibited the highest inhibition (61.6%) of NO by BV2 cells [21], similar to the findings in this study. Further, *Houttuynia cordata*, a traditional plant used as folk medicine for treating several ailments including allergic inflammation and anaphylaxis showed that HC-EA (ethyl acetate fraction) inhibited the LPS-stimulated increase of NO release by BV2 cells in a concentration-dependent manner [22].

Eight major lipid components, comprising 41.7% of the total components detected in the ethyl acetate fraction, were identified using GC-MS (Table 2). Two other components amounting to 38.2% of the total oil were not identified. The three major components were identified as linoleic acid (23.3%), ethyl linoleate (8.1%) and oleic acid (2.1%). About 25% of the total identified components in the ethyl acetate fraction were linoleic acid and oleic acid. The presence of these fatty acids as major components instead of phenolic compounds may have contributed to the inhibition of NO production. This correlates with the antioxidant findings in the present study in that the ethyl acetate fraction has a high antioxidant activity but relatively low TPC levels.

The dominant components; linoleic acid, ethyl linoleate and oleic acid were tested individually to measure their effect on viability and nitrite production in BV2 cells. The results are shown in Figure 3. The positive control (untreated BV2 cells) for cell viability was denoted as 100%. The unstimulated cell basal levels (0.2 \(\mu \text{M} \pm 0.6 \)) of NO were detected while LPS stimulation of the cells resulted in an increase in NO production (81.2 \(\mu \text{M} \pm 2.1 \)). The major compounds were not cytotoxic to BV2 cells at concentrations up to 100 \(\mu \text{g/mL} \). Increase in the concentrations of linoleic acid led to a decrease in NO production. There was a significant (\(p < 0.05 \)) reduction of 57% in NO production when compared with the control (cDNA of unstimulated BV2 cells), as shown in Figure 4. Treatment with linoleic acid significantly (\(p < 0.05 \)) decreased both iNOS and COX2 expression by 1.2 fold compared with the LPS (negative control).

Unsaturated fatty acid components are able to penetrate into the cells to reduce NO production of glial cells by down-regulating the expression of iNOS. The major lipid component, linoleic acid, caused a significant (\(p < 0.05 \)) reduction of iNOS and COX2 gene expression. Linoleic acid downregulated the expression of the proinflammatory genes, iNOS (30%) and COX2 (15%), lower than in aspirin treated cells. Aspirin is a non-steroidal anti-inflammatory drug (NSAID) known to exert its effects through inhibition of COX2. Pharmacological inhibition of COX2 can provide relief from the symptoms of inflammation and pain. In this study, linoleic acid was demonstrated to mimic aspirin in reducing inflammation via the COX2 mediated pathway. Yu et al. [27] had shown that linoleic acid reduced NO production by LPS activated cells and decreased the IFN\(\gamma \)-dependent expression of inducible NOS (iNOS) and iNOS promoter activity. Linoleic acid is also one of the fatty acids responsible for the inhibition of COX2 catalysed prostaglandin biosynthesis, as shown in *Plantago major L.* (Plantaginaceae) [28]. Excess NO may be produced by a higher promoter activity of iNOS and to induce also COX2 in various *in vitro* and *in vivo* models causing chronic inflammation [29].

Table 2: Chemical constituents of the ethyl acetate fraction of *L. rhinocerotis*.

<table>
<thead>
<tr>
<th>RF (min)</th>
<th>Chemical constituent</th>
<th>Molecular formula</th>
<th>Molecular weight</th>
<th>Area (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.717</td>
<td>Palmitic acid</td>
<td>(\text{C}{16}\text{H}{32}\text{O}_{2})</td>
<td>284.5</td>
<td>84.2</td>
</tr>
<tr>
<td>25.393</td>
<td>Ethyl palmitate</td>
<td>(\text{C}{18}\text{H}{36}\text{O}_{2})</td>
<td>280.5</td>
<td>82.9</td>
</tr>
<tr>
<td>27.471</td>
<td>Methyl linoleate</td>
<td>(\text{C}{18}\text{H}{36}\text{O}_{2})</td>
<td>280.5</td>
<td>74.2</td>
</tr>
<tr>
<td>27.573</td>
<td>Methyl oleate</td>
<td>(\text{C}{18}\text{H}{32}\text{O}_{2})</td>
<td>296.5</td>
<td>7.0</td>
</tr>
<tr>
<td>28.305</td>
<td>Linoleic acid</td>
<td>(\text{C}{18}\text{H}{32}\text{O}_{2})</td>
<td>280.5</td>
<td>842.9</td>
</tr>
<tr>
<td>28.788</td>
<td>Ethyl linoleate</td>
<td>(\text{C}{20}\text{H}{36}\text{O}_{2})</td>
<td>308.5</td>
<td>829.1</td>
</tr>
<tr>
<td>28.873</td>
<td>Oleic acid</td>
<td>(\text{C}{18}\text{H}{36}\text{O}_{2})</td>
<td>282.5</td>
<td>74.2</td>
</tr>
<tr>
<td>29.316</td>
<td>Ethyl stearate</td>
<td>(\text{C}{20}\text{H}{40}\text{O}_{2})</td>
<td>312.5</td>
<td>2.1</td>
</tr>
<tr>
<td>37.927</td>
<td>Unidentified</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48.370</td>
<td>Unidentified</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Real time PCR was performed to investigate the effect of linoleic acid on LPS stimulated iNOS and COX2 genes which are involved in the proinflammatory response. After LPS stimulation for 24 h, the expression of iNOS and COX2 increased by 1.5 fold and 2-fold, respectively, when compared with the control (cDNA of unstimulated BV2 cells), as shown in Figure 4. Treatment with linoleic acid significantly (\(p < 0.05 \)) decreased both iNOS and COX2 expression by 1.2 fold compared with the LPS (negative control).
In conclusion, the EA fraction has the potential to suppress inflammation by reducing NO/iNOS and COX2 proinflammatory genes and to suppress inflammation via NF-κB and the STAT3 pathway. The presence of linoleic acid as the major bioactive lipid component may have contributed to the anti-oxidant and anti-inflammatory activities. However, the synergistic effect of the components in the ethyl acetate fraction may have also played a role in inhibiting neuroinflammation. To our knowledge this is the first report on the chemical constituents of the sclerotia of *L. rhinocerotis* and its in vitro anti-neuroinflammatory activity on BV2 cells.

Experimental

Materials: Freeze dried powdered sclerotia of *L. rhinocerotis* (TM02; commercial cultivar) were purchased from Ligno Biotech, Selangor, Malaysia, and linoleic (L1367) and oleic acids (O1008) from Sigma, USA.

Extraction and fractionation of sample: The powdered sclerotia were extracted and fractionated for biological screening according to a method described earlier [31]. Freeze dried powder (2.5 kg) was soaked in hydroethanol 80% and kept at room temperature for 2 days. The extract was filtered using a vacuum filter and the filtrate was concentrated on a rotary evaporator at 45°C (Buchi, Switzerland) under reduced pressure. This process was repeated 5 times; the filtrate from each extraction was concentrated and combined to obtain the crude hydroethanolic extract. This was further fractionized with *n*-hexane to yield a hexane soluble and hexane insoluble fractions, which were further partitioned with ethyl acetate: water mixture (1:1) by a counter current technique. The ethyl acetate soluble fraction was separated from the aqueous layer.

Total phenolic content (TPC) estimation: The TPC assay was conducted using the method outlined by Cheung et al. [32]. The absorbance of the sample was measured at 750 nm in a microplate reader (BioTek Instruments, USA). Gallic acid, up to 100 µg/mL, was used as a standard. The TPC results are mean values of triplicate assays and are expressed as gallic acid equivalents (GAE) per g mushroom (mg GAE/g mushroom extract).

Antioxidant activity: The antioxidant potential of the hydroethanolic extract of *L. rhinocerotis* and its *n*-hexane and ethyl acetate fractions was investigated using the following standard assays.

Ferric reducing antioxidant power (FRAP) assay: The FRAP assay was performed using the method described by Benzie and Strain [33]. FRAP reagent was prepared by mixing 50 mL of 300 mM acetate buffer, 5 mL of 10 mM 2,4,6-tripryridyl-3-triazine solution (TPTZ) in 40 mM of hydrochloric acid (HCl) and 5 mL of 20 mM ferric chloride (FeCl₃•6H₂O) in the ratio of 10:1:1. FRAP reagent (300 µL) was added to 10 µL of mushroom extract plated in a 96 well plate and absorbance was measured at 593 nm after 4 min in microplate reader. The standard used was iron sulfate (FeSO₄). FRAP results are mean values of triplicates assays and are expressed in mM FeSO₄ equivalent (FSE) per g mushroom (mmol FSE/g mushroom extract).

Trolox equivalent antioxidant capacity (TEAC) assay: TEAC was determined by using the method outlined by Re et al. [34]. The absorbance of the reaction mixture was measured at 734 nm in a microplate reader. Trolox was used as the standard. TEAC values are mean values of triplicates assay and expressed as mg Trolox equivalent (TE) per g mushroom extract (mg TE/g mushroom extract).

Diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging assay: DPPH radical activity was determined using the method of Brand-Williams et al. [35]. Ascorbic acid at different concentrations was used as standard. Mushroom extract (5 µL) was mixed with 195 µL of a methanolic solution of DPPH radical in a 96 well plate. The mixture was shaken vigorously and left to stand for 3 h in the dark, and the absorbance was measured at 515 nm. The assay was carried out in triplicate. DPPH activity was expressed in DPPH inhibition percentage (%).

BV2 cell culture: BV2 cells were maintained in Dulbecco Modified Eagle’s medium (DMEM) supplemented with 5% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin, 1 mL/L gentamycin, 250 µg/mL fungizone, 1X non-essential amino acids, 2 mg/mL insulin and 1.5 g/L sodium bicarbonate. Cultures were maintained at 37°C in 95% humidified air and 5% CO₂. Cells were harvested by treating with 0.25% trypsin in 1 mM ethylenediaminetetraacetic acid (EDTA) for 5 min at 37°C.

Cell viability assay: The cytotoxic effects were determined by using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyphenyl)-2H-tetrazolium (MTS) assay. This assay was carried out according to the method of Tan et al. [36]. In a 96 well flat-bottomed microplate, 5×10⁴ cells were seeded per well and incubated at 37°C overnight for attachment. Different concentrations of the extract were then added. After 24 h incubation, MTS solution was added and further incubated for 2 h. The absorbance was measured at 490 nm with a microplate reader (Dynex MRX II microplate reader, USA). Each assay was performed in triplicate. Absorbance of all wells was deducted from the absorbance of complete growth medium which served as background reading. Cell number was calculated in comparison to untreated cells.
Nitric oxide determination assay: Nitric oxide was measured in the culture medium as an indicator of NO production based on the Griess reaction. The BV2 cells were plated in a 96 well plate at a density of 5 × 10⁴ cells/well and incubated overnight. Cells were then incubated with different concentrations of the extract (0.01-1000 μg/mL) and 1μg/mL of Escherichia coli (O55:B5) lipopolysaccharide (LPS) (Sigma, US). After 24 h, the culture supernatant was collected for nitrite measurement. Fifty μL of the spent medium were plated in a 96 well plate and 50 μL of Griess reagent (0.1% N-(1-naphthyl)ethylene diamine-diHCl and 1% sulfanilamide and 2.5% H₃PO₄) was added. The plate was incubated for 15 min, and the absorbance measured at 530 nm using a microplate reader (Dynex MRX II microplate reader, USA). The amount of NO was calculated using a sodium nitrate standard curve [36].

GC-FID and GC-MS analysis: The sample was analyzed using Agilent Technologies gas chromatography (GC) 7890A with FID equipped with a fused silica capillary column HP-5ms, 5% phenylmethylsiloxane (30.0 m by 0.25 mm ID by 0.25-lm film thickness). Purified nitrogen was used as carrier gas at a flow rate of 1 mL per min, a split ratio of 1:10 and 2 μL injection volume. The column temperature was programmed initially at 100°C, then increased by 5°C per min to 300°C and was kept isothermally for 20 min. The temperature of the injector port and FID jet was 250°C and 230°C, respectively. Identification of constituents was performed on an Agilent GC 7890A equipped with a 5975C inert mass selective detector (70 eV direct inlet) using the same capillary column as the GC-FID, HP-5ms. The carrier gas was purified helium at a flow rate of 1 mL per min, a split ratio of 1:10 and 1 μL injection volume. The column temperature was programmed as for the GC-FID. The temperatures of the injector port and interface of the MS were 250°C and 270°C, respectively. The constituents were identified by comparison with constituents identified in the mass spectral database (Wiley Registry 9th Edition / NIST 2011 Library, 2011).

Altitude Variation in the Composition of Essential Oils, Fatty Acid Methyl Esters, and Antimicrobial Activities of Two Subspecies of *Primula vulgaris* Grown in Turkey
Nurettin Yaylı, Gonca Tosun, Buşra Yaylı, Zeynep Gündoğan, Kamil Coşkunçelebi and Şengül Alpay Karaoğlu

Chemical Composition of Fruit Essential Oil of Endemic *Malabaila pastinacifolia*
Nurhayat Tabanca

Exploitation of *Artemisia arborescens* as a Renewable Source of Chamazulene: Seasonal Variation and Distillation Conditions
Evangelos C. Michelakis, Epameinondas Evergetis, Sofia D. Kouloucheri, and Serkos A. Haroutounian

Chemical Composition and Bio-efficacy of Essential Oils from Italian Aromatic Plants: *Mentha suaveolens*, *Coridothymus capitatus*, *Origanum hirtum* and *Rosmarinus officinalis*
Antonella Spagnoletti, Alessandra Guerrini, Massimo Tacchini, Vittorio Vinciguerra, Claudia Leone, Immacolata Maresca, Giovanna Simonetti, Gianni Sacchetti and Letizia Angiolella

Essential Oil Composition of *Helichrysum conglobatum* from Cyprus
Kaan Polatoğlu, Betül Demirci, İhsan Çalış and Kemal Hüsnü Can Başer

Chemical Composition and Anti-inflammatory Activity of the Essential Oils from *Seseli gumiferum* and *Seseli corymbosum* subsp. *corymbosum*
Alev Tosun, Jaemoo Chun, Igor Jerković, Zvonimir Marijanović, Maurizio A. Fenu, Sena S. Aslan, Carlo I. G. Tuberoso and Yeong S. Kim

Chemical Characterization of the Volatiles of Leaves and Flowers from Cultivated *Malva sylvestris var. mauritiana* and their Antimicrobial Activity Against the Aetiological Agents of the European and American Foulbrood of Honeybees (*Apis mellifera*)
Roberto Cecotti, Patrizia Bergomi, Emanuele Carpana and Aldo Tava

Essential Oil Composition of *Pimpinella cypria* and its Insecticidal, Cytotoxic, and Antimicrobial Activity
Nurhayat Tabanca, Ayse Nalbantsoy, Ulrich R. Bernier, Natasha M. Agramonte, Abbas Ali, Andrew Y. Li, Husniye Tansel Yalcin, Salih Guçel and Betül Demirci

Chemical Composition and Biting Deterrent Activity of Essential Oil of *Tagetes patula* (Marigold) against *Aedes aegypti*
Abbas Ali, Nurhayat Tabanca, Elham Amin, Betül Demirci and İkhlas A. Khan

Larvicidal Activity of Essential Oil Constituents Against Malaria Vector, *Anopheles gambiæ* (Diptera: Culicidae)
Tamires Cardoso Lima, Elinnayga J. Kweka, Chrian M. Marciade and Damiao Pergentino de Sousa

Preparative Capillary GC for Characterization of Five *Dracocephalum* Essential Oils from Mongolia, and their Mosquito Larvicidal Activity
Gülmira Özek, Nurhayat Tabanca, Mohammed M. Radwan, Sanduin Shatar, Altaa Altantsetseg, Dumaajav Baatar, Kemal H. C. Başer, James J. Becnel and Temel Özek

Effect of Thyme Essential Oil Supplementation on Thymol Content in Blood Plasma, Liver, Kidney and Muscle in Broiler Chickens
Vladimíra Oceľová, Remigius Chizzola, Jana Písarčíková, Johannes Novak, Oksana Ivanišinová, Štefan Faix and Iveta Plachá

Analysis and Olfactory Description of Four Essential Oils from Vietnam
Erich Schmidt, Le T. Huong, Do N. Dai, Tran D. Thang, Juergen Wanner and Leopold Jirovetz

A Pilot Study on the Physiological Effects of Three Essential Oils in Humans
Martina Höferl, Christina Hüttner and Gerhard Buchbauer

Influence of Essential Ginger Oil on Human Psychophysiology after Inhalation and Dermal Application
Iris Stappen, Anna-Sofie Hoelzl, Oliveira Randjelovic and Juergen Wanner

Accounts/Reviews

Natural Sesquiterpene Lactones as Potential Trypanocidal Therapeutic Agents: A Review
Liliana V. Muschietti and Jerónimo L. Ulloa

Natural Triterpenoids for the Treatment of Diabetes Mellitus: A Review
Han Lyu, Jian Chen and Wei-lin Li

The Biological Activity of Alkaloids from the Amaryllidaceae: From Cholinesterases Inhibition to Anticancer Activity
Klára Habartová, Lucie Cahliková, Martina Řezáčová and Radim Havelek

Chemical and Biological Study of Cladosporin, an Antimicrobial Inhibitor: A Review
Xiaoning Wang, David E Wedge and Stephen J Cutler

An Interesting Tour of New Research Results on Umami and Umami Compounds
Sabine Greisinger, Stefan Jovanovski and Gerhard Buchbauer

Biological Properties of Some Volatile Phenylpropanoids
Radmila Iljeva and Gerhard Buchbauer
Contents

Editorial

Greeting Message
Herbert Ipser and Erich Leitner

Preface
Ernst Urban

Original Paper

Analgesic Activity of Novel GABA Esters after Transdermal Delivery
Maria Nesterkina and Iryna Kravchenko

11-Hydroxy-2,4-cycloeudesmane from the Leaf Oil of Juglans regia and Evaluation of its Larvicidal Activity

Insecticidal Pregnancy Glycosides from the Root Barks of Periploca sepium
Renfeng Li, Ximei Zhao, Baojun Shi, Shaopeng Wei, Jiwen Zhang, Wenjun Wu and Zhaonong Hu

Synthesis and Antimicrobial Activity of Calycanthaceous Alkaloid Analogues
Shaojun Zheng, Longbo Li, Yu Wang, Rui Zhu, Hogjin Bai and Jiwen Zhang

Apigenin Suppresses Angiogenesis by Inhibiting Tube Formation and Inducing Apoptosis
Hyun Ju Kim and Mok-Ryeon Ahn

A Novel Genistein Prodrug: Design, Synthesis and Bioactivity on Mouse RAW264.7 Macrophages
Burkhard Kloesch, Silvia Loebsch, Jenny Breitenbach, Katrin Goldhahn, Norbert Handler, Philipp Schreppel and Thomas Erker

Cytotoxic Effects of Resveratrol, Rutin and Rosmarinic Acid on ARH–77 Human (Multiple Myeloma) Cell Line
Zerrin Canturk, Miris Dikmen, Oge Artagan, Mustafa Guclu Ozarda and Nilgün Oztürk

Evaluation of Antioxidant Interactions of Combined Model Systems of Phenolics in the Presence of Sugars
Mirela Kopjar, Ante Lončarić, Mateja Mikulinjak, Žaklina Šrajbek, Mihaela Šrajbek and Anita Pichler

HPLC Fingerprint Combined with Quantitation of Phenolic Compounds and Chemometrics as an Efficient Strategy for Quality Consistency Evaluation of Sambucus nigra Berries
Agnieszka Viapiana and Marek Wesolowski

In vitro Antioxidant and Antimicrobial Effects of Ceratostigma plumbaginoides
Hosam O. Elansary, Kowiyou Yessoufou, Eman A. Mahmoud and Krystyna Skalicza-Woźniak

Enzyme-hydrolyzed Fruit of Jurinea mollis: a Rich Source of (−)-(8R,8′R)-Arctigenin
Rita Könye, Ágnes Evelin Ress, Anna Sőlyomváry, Gergő Tóth, András Darcsi, Balázs Komjáti, Péter Horváth, Béla Noszály, Ibolya Molnár-Perl, Szabolcs Béri and Imre Boldizsár

In vitro Antioxidant and Meaty Aroma Impressions
Bettina Wailzer, Johanna Klocker, Peter Wolschann and Gerhard Buchbauer

Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases
Alessio Cimmino, Tamara Cinelli, Marco Evidente, Marco Masi, Laura Mugnai, Marcondes A. Silva, Sami J. Michereff, Giuseppe Surico and Antonio Evidente

Identification and in vitro Evaluation of Lipids from Sclerotia of Lignosus rhinocerotis for Antioxidant and Anti-neuroinflammatory Activities
Neeranjini Nallathamby, Lee Guan Serm, Jegadeesh Raman, Sri Nurestri Abd Malek, Sharmili Vidyadaran, Murali Naidu, Umah Rani Kuppusamy and Vikineswary Sabaratham

Plant Genomic DNA Extraction for Selected Herbs and Sequencing their Internal Transcribed Spacer Regions Amplified by Specific Primers
Farah Izana Abdullah, Lee Suan Chua, Zaidah Rahmat, Azman Abh Samad and Alina Wragan

Effect of Angelica acutiloba Extract on Blood flow Regulation in Stroke-prone Spontaneously Hypertensive Rats
Hiroko Negishi, Sari Sugahama, Ayaka Kawakami, Junna Kondo, Yuriko Nishigaki, Masato Yoshikawa, Taketeru Ueyama and Katsumi Ikeda

Pharmacophore Models Derived From Molecular Dynamics Simulations of Protein-Ligand Complexes: A Case Study
Marcus Wieder, Ugo Perricone, Thomas Seidel and Thierry Langer

Continued inside backcover