Assessment of Four Molecular Markers as Potential DNA Barcodes for Red Algae *Kappaphycus* Doty and *Eucheuma* J. Agardh (Solieriaceae, Rhodophyta)

Ji Tan1,2, Phaik-Eem Lim1,2*, Siew-Moi Phang1,2, Dang Diem Hong3, H. Sunarpi4, Anicia Q. Hurtado5

1 Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia, 2 Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur, Malaysia, 3 Institute of Biotechnology, Vietnamese Academy of Science and Technology, Cau Giay, Hanoi, Vietnam, 4 Faculty of Science and Mathematics, Mataram University, Mataram, Lombok, Indonesia, 5 Integrated Services for the Development of Aquaculture and Fisheries, Tabuc Suba, Iliolo City, Philippines

Abstract

DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded *cox1* and plastid-encoded *rbcL* has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes *Kappaphycus* and *Eucheuma*. This study gauges the effectiveness of four markers, namely the mitochondrial *cox1*, *cox2*, *cox2-3* spacer and the plastid *rbcL* in DNA barcoding on selected *Kappaphycus* and *Eucheuma* from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used *cox2-3* spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the *cox2* marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of *Kappaphycus* and *Eucheuma*. However, the already extensively used *cox2-3* spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, *cox1* and *rbcL* were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of *Kappaphycus* and *Eucheuma* were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.

Citation: Tan J, Lim P-E, Phang S-M, Hong DD, Sunarpi H, et al. (2012) Assessment of Four Molecular Markers as Potential DNA Barcodes for Red Algae *Kappaphycus* Doty and *Eucheuma* J. Agardh (Solieriaceae, Rhodophyta). PLoS ONE 7(12): e52905. doi:10.1371/journal.pone.0052905

Editor: Sofia Consuegra, Aberystwyth University, United Kingdom

Received September 7, 2012; **Accepted** November 23, 2012; **Published** December 20, 2012

Copyright: © 2012 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Project funding is by the E-Science Fund, Project No. 14-02-03-4027, Department of Fisheries Malaysia (53-02-03-1062) and University of Malaya Malaya, PPP (Phylogenetic analysis of Kappaphycus spp. and Eucheuma spp. with the application of various molecular markers; grant number: PV014/2011A). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: phaikee@um.edu.my

Introduction

The introduction of DNA barcodes by Herbert and co-workers [1,2,3] has brought about large impacts on the advancement of systematic biology; where short, easily amplified regions of DNA exhibiting large variation among species, yet sufficiently variable within species, are constantly used for species delineation, identification as well as archiving with reference to known, established species [4,5,6]. The Barcode of Life Data System (BOLD) is notably the largest initiative in establishing a worldwide DNA barcode library, signifying its importance and popularity for the scientific community [7,8,9]. The usefulness of DNA barcoding is evident when dealing with taxa displaying phenotypic plasticity throughout diphasic or triphasic life cycles as well as taxa involving cryptic species. These phenomena are generally predominant in marine macroalgae, thereby enticing the application of DNA barcoding, as reported in numerous studies encompassing the order Gelidiales [10], Gigartinales, [11,12,13], Gracilariales [14,15], Laminariales [16], and Fucales [17]. Studies on DNA barcoding over broader taxa of rhodophytes have also been reported with promising results [18,19,20].

The rhodophytes *Kappaphycus* and *Eucheuma*, commercially known as “cottonii” and “spinosum”, respectively are widely established as lucrative sources of carrageenan, with Indonesia and the Philippines being the largest carrageenophyte producers worldwide [21]. Despite being extensively farmed, the morphologically diverse nature of *Kappaphycus* and *Eucheuma* still poses difficulties in species identification [22,23,24,25,26,27,28], even leading to the cultivation of mixed populations that inevitably reduces overall yield [29]. These have resulted in the subsequent employment of molecular phylogenetic studies which all share one main objective – to infer and understand the phylogenetic relationships between *Kappaphycus* and *Eucheuma* congeners. As of now, various molecular markers have been introduced for the molecular taxonomy of these carrageenophytes, namely the mitochondrial-encoded partial *cox1* and *cox2-3* spacer, nuclear-encoded ribosomal Internal Transcribed Spacer (ITS) and 28S large subunit (LSU), plastid-encoded *rbcL*, RuBisCO spacer and the 23S Universal Plastid Amplicon (UPA) [23,28,30,31]. However, the suitability of these genetic markers as DNA barcodes are to date, unassessed.