Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09)

1Environmental Research Group, Department of Chemistry, University Malaya, 50603 Kuala Lumpur, Malaysia
2National Antarctic Research Centre, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia
3Institute of Ocean & Earth Sciences, C308 IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia
4Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
5Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
6Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
7National Centre for Atmospheric Science, UK
8Centre for Tropical Climate Change System (IKLIM), Institute for Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
9School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia

*now at: School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
**now at: School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
***now at: Institute of Ocean & Earth Sciences, C308 IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence to: M. S. Mohd Nadzir (mailto:shahrulnadzir@ukm.edu.my)

Received: 28 October 2013 – Published in Atmos. Chem. Phys. Discuss.: 13 January 2014
Revised: 19 June 2014 – Accepted: 24 June 2014 – Published: 14 August 2014

Abstract. Atmospheric concentrations of very short-lived species (VSLS) bromocarbons, including CHBr3, CH2Br2, CHCl2Br, CHClBr2, and CH2BrCl, were measured in the Strait of Malacca and the South China and Sulu–Sulawesi seas during a two-month research cruise in June–July 2009. The highest bromocarbon concentrations were found in the Strait of Malacca, with smaller enhancements in coastal regions of northern Borneo. CHBr3 was the most abundant bromocarbon, ranging from 5.2 pmol mol$^{-1}$ in the Strait of Malacca to 0.94 pmol mol$^{-1}$ over the open ocean. Other bromocarbons showed lower concentrations, in the range of 0.8–1.3 pmol mol$^{-1}$ for CH2Br2, 0.1–0.5 pmol mol$^{-1}$ for CHCl2Br, and 0.1–0.4 pmol mol$^{-1}$ for CHClBr2. There was no significant correlation between bromocarbons and in situ chlorophyll a, but positive correlations with both MODIS and SeaWiFS satellite chlorophyll a. Together, the short-lived bromocarbons contribute an average of 8.9 pmol mol$^{-1}$ (range 5.2–21.4 pmol mol$^{-1}$) to tropospheric bromine loading, which is similar to that found in previous studies from global sampling networks (Montzka et al., 2011). Statistical tests showed strong Spearman correlations between brominated compounds, suggesting a common source. Log–log plots of CHBr3/CH2Br2 versus CHBr2Cl/CH2Br2 show that both chemical reactions and dilution into the background atmosphere contribute to the composition of these halocarbons at each sampling point. We have used the correlation to...