A just-in-time three-level integrated manufacturing system for linearly time-varying demand process

M. Omar,⇑ R. Sarker, W.A.M. Othman

Article info
Article history:
Received 24 February 2011
Received in revised form 13 March 2012
Accepted 21 March 2012
Available online xxxx

Keywords:
Inventory
Linear time-varying demand
Integrated
Just-in-time
Infinite horizon

Abstract
This paper considers a just-in-time (JIT) manufacturing system in which a single manufacturer procures raw materials from a single supplier, processes them to produce finished products, and then delivers the products to a single-buyer. The customer demand rate is assumed to be linearly decreasing time-varying. In the JIT system, in order to minimize the suppliers as well as the buyers holding costs, the supply of raw materials and the delivery of finished products are made in small quantities. In this case, both the supply and the delivery may require multiple installments for a single production lot. We develop a mathematical model for this problem, propose a simple methodology for solving the model, and illustrate the effectiveness of the method with numerical examples.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Over the last few decades, the supply chain design and management issues have been widely studied. Still, these are attractive research topics, partly because of the relentless drive to lower cost and partly because of improving service quality through efficient information sharing/exchange among different parties involved in the entire supply chain. Since 1980, there have been numerous studies discussing implementation of JIT and its effectiveness in US manufacturing system [1].

In the JIT integrated manufacturing system, the raw material supplier, the manufacturer, and the buyer work in a cooperative manner to synchronize JIT purchasing and selling in small lot sizes as a means of minimizing the total supply chain cost.

Goyal [2] was probably one of the first to introduce the idea of integrating a single vendor with a single buyer as part of a simple two entity supply line system. Later, Banerjee [3] developed a model where the vendor manufacture at a finite rate and that follows a lot-for-lot policy. Since then, many variants are reported in the literature. For example, the two-level vendor–buyer problem and its related issues can be found in Goyal [4], Hill [5,6], Valentini and Zavanella [7], Zanoni and Grubbstrom [8] and Hill and Omar [9]. The manufacturing-vendor model can be found in Sarker and Khan [10].

For a three stage supply chain, Banerjee and Kim [14] developed an integrated JIT inventory model where the demand rate, production rate, and delivery time are constant and deterministic. Munson and Rosenblatt [15], Lee [16], Lee and Moon [17], and Jaber and Goyal [18] also considered a similar problem consisting of a single raw material supplier, a single vendor, and a single buyer. Jaber et al. [19] extended the work of Munson and Rosenblatt [15] by considering ordering quantity and price as decision variables.

⇑ Corresponding author. Tel.: +60 379674084; fax: +60 379674143.
E-mail address: mohd@um.edu.my (M. Omar).

0307-904X/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.apm.2012.03.041

Please cite this article in press as: M. Omar et al., A just-in-time three-level integrated manufacturing system for linearly time-varying demand process, Appl. Math. Modell. (2012), http://dx.doi.org/10.1016/j.apm.2012.03.041
None of the above researchers consider a collaborative three stage supplier–manufacturer–buyer inventory system with time-varying demand rate. In this paper, by assuming linearly decreasing time-varying demand rate at the buyer’s end, we develop a mathematical model for a coordinated three-level JIT supplier–manufacturer–buyer inventory system, propose a simple solution approach for solving the model, and illustrate the effectiveness of the method by numerical examples.

The paper is organized as follows. In Section 2, we summarize the assumptions made to define the problem and the notations required to develop the mathematical model. In Section 3, we formulate the problem. The numerical results and analysis are presented in Section 4. Finally we draw our conclusions in Section 5.

2. Assumptions and notations

The supply chain problem considered here consists of a single raw material supplier, a single manufacturer who manufactures the finished product in batches at a finite rate and delivers it at equal shipment size or at equal replenishment interval to a single buyer. At the beginning of the production cycle, the inventory at the manufacturer’s end is assumed to be zero. However, the inventory level at the buyer’s end is just enough to satisfy their demand until the next delivery arrives. The stock value normally increases as a product moves down the distribution chain, and therefore the associated holding costs are considered to be higher. However, as indicated earlier, we want as little stock as possible at the buyer’s side. So the optimal policy is to order when the buyer is just about to run out of stock.

The total cost for this system includes all costs from both buyer and manufacturer. The buyer’s cost consists of shipment and holding cost. The manufacturer’s cost includes setup and holding cost of finished products, and ordering and holding cost of raw materials.

To develop a JIT three-level integrated inventory model, we have made the following assumptions.

1. No shortages are permitted.
2. A single product inventory system is considered over a finite planning horizon.
3. During the production up-time, the finished product becomes immediately available to meet the demand.
4. The demand rate of finished product at any time \(t \) in \((0, T)\) is \(f(t) \) and assumed to be linearly decreasing.
5. The finite production rate is \(P \) units per unit time where \(P > f(t) \) for all \(t \).
6. Only one type of raw material is considered.

The following notations are used in modeling the problem.

1. \(C_p \) is the manufacturing set-up cost.
2. \(C_r \) is the ordering cost for raw material \(1 \).
3. \(C_s \) is the shipment cost
4. \(H_p \) is the inventory carrying cost per unit per unit time for finished product at the manufacturer end.
5. \(H_1 \) is the inventory carrying cost per unit per unit time for raw material \(1 \).
6. \(H_n \) is the inventory carrying cost per unit per unit time at the buyer’s side.
7. \(n \) is the number of shipment.
8. \(m \) is the raw material’s lot size factor and equivalent to the number of raw material installment.

3. Mathematical formulation

To show the relative lot sizing in three stages, the inventory levels with time plot, where \(m = 3 \) and \(n = 4 \), is depicted as Fig. 1. The bottom part of the figure shows the inventory level of raw material. The raw material required for each production batch is delivered in equal quantity in \(m \) cycles. Similarly, one production batch is delivered in \(n \) equal shipments to the buyer as shown in the top part of the figure. The middle part shows the inventory level for the production system.

3.1. Buyer’s total cost

For convenience of formulation, the amount of stock holding at the buyer’s end during the time period \(T \) is calculated assuming that either all remaining \(x \) units from the previous cycle is fully consumed or \(t_0 = 0 \). From Fig. 1, the buyer stock level, \(IB_{i+1} \) in any period \(i + 1, \ i = 0, 1, \ldots, n - 1 \) is

\[
IB_{i+1} = q - \int_{t_i}^{t_{i+1}} f(t)\,dt = \int_{t_i}^{t_{i+1}} f(t)\,dt - \int_{t_i}^{t} f(t)\,dt = \int_{t}^{t_{i+1}} f(t)\,dt.
\]

The total time weighted stock holding, \(TWB \), from \(t_0 \) to \(t_n \) is given by

\[
TWB = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} IB_{i+1}\,dt,
\]

where \((t_i, t_{i+1})\) is the cycle for \((i + 1)\)th shipment. In this paper we consider two possible policies. In the first policy we assume equal shipments interval where \(t_i = iT/n \). For the second policy we assume equal shipments lot size where for
n–shipments we have \(q = (1/n) \int_0^T f(t) \, dt \). It follows that for any shipment cycle, \(q = \int_{t_i}^{t_{i+1}} f(t) \, dt \). Finally for a linearly decreasing demand rate, \(f(t) = a - bt \), we have

\[
t_i = \left(\frac{1}{b} \right) \left[a - \sqrt{\frac{1}{n} (a^2 n - 2abiT + ib^2 T^2)} \right].
\]

Here, \(a \) is the intercept and \(b \) is the slope of the linearly decreasing demand function considered in this paper.

The total cost per unit time at the buyer’s end, \(TCB \), is

\[
TCB = \frac{1}{T} (nC_b + H_b T W B).
\]

By using the relationship above, \(TCB \) is a function of single variable of \(T \).

For example, if \(f(t) = a - bt \) and \(t_i = i(T/n) \), then \(T W B_i \) becomes

\[
T W B_i = \frac{1}{6} \sum_{i=0}^{n-1} \left[(t_i - t_{i+1})^2 (3a - bt_i - 2bt_{i+1}) \right] = \frac{T^2}{6n^2} \sum_{i=0}^{n-1} \left(3a - \frac{2bT}{n} - \frac{3bT}{n} i \right) = \frac{T^2}{12n^2} [6an - bT(1 + 3n)].
\]

Similarly, for the equal lot size shipment, then

\[
T W B_q = \frac{1}{6} \sum_{i=0}^{n-1} \left[(t_i - t_{i+1})^2 (3a - bt_i - 2bt_{i+1}) \right],
\]

where \(t_i = \left(\frac{i}{n} \right) \left[a - \sqrt{\frac{1}{n} (a^2 n - 2abiT + ib^2 T^2)} \right] \).

3.2. Manufacturer’s total cost

The middle part of Fig. 1 shows the manufacturing inventory level during the period \(T \). The time weighted system stock is then:

\[
T W S = xT + \int_0^T I_1(t) \, dt + \int_{t_s}^T I_2(t) \, dt,
\]

\[\text{(4)} \]

Fig. 1. Inventory plots against time for equal lots shipment size \(q \).
where $I_1(t) = Pt - \int_0^tf(t)dt$ is inventory level during production up-time and $I_2(t) = \int_0^tf(t)dt$ is the inventory level during production down-time. The total production quantity is $Pt = \int_0^tf(t)dt$. x is the amount of stock the buyer needs at the beginning of a production cycle to meet the customer demand that also allows the manufacturer enough time to build up inventory for future deliveries. When the consumption of x units is finished, the buyer will get the first shipment from the manufacturer.

For the first policy, from Fig. 1, we have $P(T - t_x) = \int_0^Tf(t)dt$ and $x = \int_0^tf(t)dt$. For the second policy, we have $P(T - t_x) = (1/n)\int_0^Tf(t)dt$. For both cases we can express x and TWS in terms of single variable T.

For example, if $f(t) = a - bt$ (as assumed earlier) then for the first policy (equal shipments interval) we have $t_x = T(-2a + 2n^2P + bT)/(2n^2P)$. It follows from Eq. (4), the time weighted system stock for the first policy is

$$TWS_1 = \frac{T^2}{24n^2P^2} \left[12an^2P(2a - an + nP) + 4bn^2T(3a^2 + 3an^2P - 6anP - 3aP - 2n^2P^2) - 3b^2nT^2(4a - 4nP + n^2P) + 3b^3T^3\right].$$

(5)

For the second policy (equal shipments lot size), we have $t_x = T(-2a + 2nP + bT)/(2nP)$ and from Eq. (4),

$$TWS_2 = \frac{T^2}{24n^2P^2} \left[12anP(2a - an + nP) + 4bT(3a^2 + 3an^2P - 9anP - 2n^2P^2) - 3b^2T^2(4a - 4nP + n^2P) + 3b^3T^3\right].$$

(6)

For raw material, from the bottom of Fig. 1 we have $nq/m = (1/m)\int_0^Tf(t)dt$, and the total cost per unit time, TCR, is

$$TCR = \frac{1}{T} \left[mc_1 + h_1 \left(\int_0^T f(t)dt\right)^2/(2mP)\right].$$

For both policies, if $f(t) = a - bt$ then we have

$$TCR = \frac{1}{T} \left[mc_1 + \frac{H_1 T^2}{8mP}(bT - 2a)^2\right].$$

(7)

Hence, the total cost per unit time for the manufacturer, TCM, is

$$TCM = \frac{1}{T} \left\{c_p + h_p(TWS - TWB)\right\} + TCR.$$

(8)

It follows from Eqs. (1) and (8), the total relevant cost for the system per unit time, TRC, is

$$TRC = TCM + TCB.$$

(9)

For example, if $f(t) = a - bt$ and $t_i = i(T/n)$, then from our formulation the closed form of the total relevant cost for the system per unit time, TRC_i, is a function of the three decision variables (m, n, T) and

$$TRC_i = \frac{1}{T} \left\{c_p + h_p(TWS_i - TWBi)\right\} + TCR$$

$$= \frac{1}{T} \left[mc_1 + c_p + nc_b\right] + \frac{b^2T^3H_p}{8n^2P^2} + b^2T^3 \left(\frac{H_1}{8n^2P^2} - \frac{aH_p}{8P} + \frac{H_p}{n^2P}\right)$$

$$+ bT^2 \left(-\frac{H_b}{12n^2} + \frac{aH_1}{4n^2P} - \frac{H_p}{3} + \frac{H_p}{12n^2} + \frac{a^2H_p}{4n^2P} + \frac{aH_p}{2n^2P} + \frac{H_p}{n^2P}\right)$$

$$+ aT \left(\frac{H_b}{2n} + \frac{aH_1}{2mP} + \frac{H_p}{2nP}\right).$$

(10)

For equal shipments lot size, the total relevant cost for the system per unit time, TRC_α, is also a function of (m, n, T). For this policy,

$$TRC_\alpha = \frac{1}{T} \left\{c_p + h_p(TWS_\alpha - TWB_\alpha)\right\} + TCR$$

$$= \frac{1}{T} \left[mc_1 + c_p + nc_b\right] + \frac{H_1 T}{8mP}(bT - 2a)^2$$

$$+ \frac{H_p T}{24n^2P^2} \left[12anP(2a - an + nP) + 4bT(3a^2 + 3an^2P - 9anP - 2n^2P^2) - 3b^2T^2(4a - 4nP + n^2P) + 3b^3T^3\right]$$

$$+ \frac{H_b - H_p}{6T} \sum_{i=0}^{n-1} \left(t_i - t_{i+1}\right)^2(3a - bt_i - 2bt_{i+1})]),$$

(11)

where $t_i = \left(\frac{i}{n}\right)a - \sqrt{\frac{1}{4}(a^2n - 2abiT + tib^2T^2)}$. However, there is no closed form for the last term of Eq. (11). For example when $n = 3$, it becomes

Please cite this article in press as: M. Omar et al., A just-in-time three-level integrated manufacturing system for linearly time-varying demand process, Appl. Math. Modell. (2012), http://dx.doi.org/10.1016/j.apm.2012.03.041
And for \(n = 4 \), we have

\[
\frac{H_b - H_p}{T} \left[-\frac{bT^3}{3} + \frac{T^2}{8} \left(7a - \frac{\sqrt{2a^2 - 2abT + b^2T^2}}{2} - \frac{\sqrt{4a^2 - 2abT + b^2T^2}}{4} - \frac{\sqrt{4a^2 - 6abT + 3b^2T^2}}{4} \right) + \frac{aT}{4b} \left(-3a + \frac{\sqrt{2a^2 - 2abT + b^2T^2}}{2} + \frac{\sqrt{4a^2 - 2abT + b^2T^2}}{4} + \frac{\sqrt{4a^2 - 6abT + 3b^2T^2}}{4} \right) \right].
\]

4. Numerical illustration and sensitivity analysis

The total relevant cost functions for both policies in Eq. (10) and (11) contain a continuous variable \(T \) and integer variables \(m \) and \(n \). Let consider a numerical example with the following data: \(f(t) = a - bt \) with \(a = 7000 \), \(b = 700 \), \(C_p = 200 \), \(C_1 = 80 \), \(C_b = 30 \), \(P = 10000 \), \(H_p = 5 \), \(H_1 = 3 \) and \(H_b = 8 \). Figs. 2–4 give the convexity behavior of the total relevant cost for both policies against \(T \), \(m \) and \(n \). Assuming convexity, we compute numerically until the first minimum for each variable is found.
Fig. 4. Total relevant cost for both policies when \(m = 3 \) against \(n \).

Table 1
Minimum total relevant costs, \(TRC_t \) and \(TRC_q \) for different combination of \(m \) and \(n \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(TRC_t)</th>
<th>(TRC_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>5817.1 (5812.8)</td>
<td>5777.5 (5773.2)</td>
</tr>
<tr>
<td>2</td>
<td>5842.0 (5837.8)</td>
<td>5909.3 (5905.1)</td>
<td>5988.6 (5984.6)</td>
</tr>
<tr>
<td>3</td>
<td>6037.0 (6029.1)</td>
<td>5857.2 (5849.3)</td>
<td>5760.8 (5753.0)</td>
</tr>
<tr>
<td>4</td>
<td>6330.3 (6321.0)</td>
<td>6108.5 (6099.1)</td>
<td>5979.7 (5970.4)</td>
</tr>
</tbody>
</table>

Table 2
Minimum total relevant costs, \(TRC_t \) and \(TRC_q \) for varying \(H_b \).

<table>
<thead>
<tr>
<th>(H_b)</th>
<th>(m)</th>
<th>(n)</th>
<th>(TRC_t)</th>
<th>(TRC_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>5387.7 (1397)</td>
<td>5380.9 (1401)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>7</td>
<td>5603.6 (1418)</td>
<td>5597.4 (1421)</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>8</td>
<td>5801.0 (1441)</td>
<td>5795.3 (1444)</td>
</tr>
</tbody>
</table>

Table 3
Minimum total relevant costs, \(TRC_t \) and \(TRC_q \) for varying \(C_p \).

<table>
<thead>
<tr>
<th>(C_p)</th>
<th>(m)</th>
<th>(n)</th>
<th>(TRC_t)</th>
<th>(TRC_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2</td>
<td>6</td>
<td>5071.8 (1210)</td>
<td>5066.7 (1213)</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>7</td>
<td>5603.6 (1418)</td>
<td>5597.4 (1421)</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
<td>8</td>
<td>6065.5 (1607)</td>
<td>6058.4 (1611)</td>
</tr>
</tbody>
</table>

Table 4
Minimum total relevant costs, \(TRC_t \) and \(TRC_q \) for varying \(C_1 \).

<table>
<thead>
<tr>
<th>(C_1)</th>
<th>(m)</th>
<th>(n)</th>
<th>(TRC_t)</th>
<th>(TRC_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4</td>
<td>7</td>
<td>4844.2 (1408)</td>
<td>4838.1 (1412)</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>7</td>
<td>5162.4 (1430)</td>
<td>5156.1 (1433)</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>7</td>
<td>5404.5 (1367)</td>
<td>5398.8 (1370)</td>
</tr>
</tbody>
</table>

Please cite this article in press as: M. Omar et al., A just-in-time three-level integrated manufacturing system for linearly time-varying demand process, Appl. Math. Modell. (2012), http://dx.doi.org/10.1016/j.apm.2012.03.041
Table 1 gives the minimum total relevant cost for the system per unit time for both policies for several combinations of m and n. The total relevant cost for the system per unit time for equal lots shipment size policy are given in parentheses.

Our numerical result shows that the policy with equal lots shipment size are always superior than the policy with equal shipment interval. The best solution for each policy is when the number of raw material installments, $m = 2$ and the number of shipments, $n = 7$. The minimum total relevant cost for the system per unit time for each policy, $TRC_t = 5603.6$ when $T = 0.204591$ and $TRC_q = 5597.4$ when $T = 0.205047$. The lot size for the equal shipment policy is 203 unit with a total production size of 1421. The lot sizes for the equal shipment interval policy are 204, 204, 203, 203, 202, 201 and 201 with a total production size of 1418.

We perform a sensitivity analysis by solving many sample problems in order to identify how do the minimum total relevant costs, the number of shipment and the number of raw material installment respond to parameter changes.

Tables 2–5 show that the minimum total relevant costs increase with H_b, C_p, C_t and C_s. The total production size for both policies are given in parentheses. We observe that when H_b and C_p increase, the system favors larger n, i.e. more frequent shipment due to the larger production size. We also observe that when C_t and C_s increase, the system favors smaller m and n.

5. Conclusion

In this paper, we have considered a three-stage production-inventory system, under a just-in-time manufacturing environment, where the manufacturer must deliver the products in small quantities to minimize the buyer’s holding cost and accept the supply of small quantities of raw material to minimize its own holding cost. We develop a mathematical model for this problem which is basically a generalization of Banerjee and Kim [14] model by considering linearly decreasing time-varying demand rate. This model could be easily adapted to other demand function such as linearly increasing and exponentially increasing/decreasing. This approach can also be extended to other problem by considering delay payment, unit cash discount, deteriorating item, stock-dependent demand and single-vendor multi-buyer problem.

References