Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations

Abstract

Fully atomistic molecular dynamics simulation studies of thermotropic bilayers were performed using a set of glycosides namely n-octyl-β-D-glucopyranoside (β-C8Glc), n-octyl-α-D-glucopyranoside (α-C8Glc), n-octyl-β-D-galactopyranoside (β-C8Gal), and n-octyl-α-D-galactopyranoside (α-C8Gal) to investigate the stereochemical relationship of the epimeric/anomeric quartet linear glycolipids with the same octyl chain group. The results showed that, the anomeric stereochemistry or the axial/equatorial orientation of C1–O1 (α/β) is an important factor controlling the area and d-spacing of glycolipid bilayer systems in the thermotropic phase. The head group tilt angle and the chain ordering properties are affected by the anomeric effect. In addition, the L_C phase of β-C8Gal, is tilting less compared to those in the fluid L_{α}. The stereochemistry of the C4-epimeric (axial/equatorial) and anomeric (α/β) centers simultaneously influence the inter-molecular hydrogen bond. Thus, the trend in the values of the hydrogen bond for these glycosides is β-C8Gal > α-C8Glc > β-C8Glc > α-C8Gal. The four bilayer systems showed anomalous diffusion behavior with an observed trend for the diffusion coefficients; and this trend is β-C8Gal > β-C8Glc > α-C8Gal > α-C8Glc. The “bent” configuration of the α-anomer results in an increase of the hydrophobic area, chain vibration and chain disorganization. Since thermal energy is dispensed more entropically for the chain region, the overall molecular diffusion decreases.

http://link.springer.com/article/10.1007/s00894-014-2165-0

Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations - Springer

Authors

- Sara Ahmadi (1) (2)
- Vijayan Manickam Achari (1)
- HockSeng Nguan (1)
- Rauzah Hashim (1)

Author Affiliations

- 1. Chemistry Department, faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
- 2. Kavli Institute for Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China

Continue reading...
To view the rest of this content please follow the download PDF link above.

Over 8.5 million scientific documents at your fingertips
© Springer, Part of Springer Science+Business Media

10% Discount
Valid for all eBooks in the Springer Shop

http://link.springer.com/article/10.1007/s00894-014-2165-0