Hupermine A, a novel C_{16}N_{2}-type Lycopodium alkaloid from *Huperzia phlegmaria*

Yusuke Hirasaa, Yuri Katoa, Chin Piow Wonga, Nahoko Uchiyamab, Yukihiro Godab, A. Hamid A. Hadib, Hapipah Mohd Alic, Hiroshi Moritaa,

aFaculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
bNational Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
cDepartment of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

A novel C$_{16}$N$_{2}$-type Lycopodium alkaloid consisting of a quinolizidine with a 6-dimethylaminohexyl side chain, hupermine A (1), was isolated from the club moss of *Huperzia phlegmaria*, and the structure and relative stereochemistry were elucidated on the basis of spectroscopic data.

Lycopodium and *Huperzia* species are a well-known rich source of unique heterocyclic alkaloids of C$_{11}$N, C$_{16}$N, C$_{16}$N$_2$, C$_{22}$N$_2$, and C$_{27}$N$_3$ types and have attracted great interest from biogenetic1,2 and biological3 points of view. These unique skeletons have also been challenging targets for total synthesis.4 Among them, huperzine A, isolated from Chinese club moss *Lycopodium serratum* is a highly specific and potent inhibitor of acetylcholinesterase (AChE).3 The inherent inhibition of AChE has prompted the pursuit of the total synthesis5 and SAR6 studies of huperzine A. Recently, we isolated new types of alkaloids such as lycobeline A7 from *Huperzia goebelii*, lycotetrastine A8 from *Huperzia tetrasticha*, huperminone A9 from *H. phlegmaria*, lycocinidine A10 from *Lycopodium chinense* and lycoparin A11 from *L. casuarinoides*. During our continuing search for biogenetically interesting intermediates and new alkaloids with a novel skeleton from Lycopodium and *Huperzia* species, hupermine A (1), a novel alkaloid consisting of a quinolizidine with a 6-dimethylaminohexyl side chain was isolated from the club moss of *Huperzia phlegmaria* (L.) Rothm. In this Letter, we describe the isolation and structure elucidation of 1.

The club moss of *H. phlegmaria* (500 g) collected in Malaysia was extracted with MeOH (1.5 L \times 3) at rt, and the extract (47 g) was partitioned between EtOAc and 3% aq tartaric acid. The water-soluble fraction was adjusted to pH 9 with saturated Na$_2$CO$_3$ and was extracted with CHCl$_3$. The CHCl$_3$-soluble fraction (730 mg) was subjected to an amino SiO$_2$ column (Hexane/EtOAc, 1:0 \rightarrow 0:1, CHCl$_3$/MeOH, 1:0 \rightarrow 0:1) and a SiO$_2$ column (CHCl$_3$/MeOH/TFA, 1:0:0 \rightarrow 0:1:0.1) to afford hupermine A (1, 5.8 mg, 0.0012%) and huperzine A (80.5 mg, 0.015%).

Table 1

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H</th>
<th>δ_C</th>
<th>Position</th>
<th>δ_H</th>
<th>δ_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.23 (2H, m)</td>
<td>60.0</td>
<td>10a</td>
<td>1.13 (1H, m)</td>
<td>18.5</td>
</tr>
<tr>
<td>2</td>
<td>1.45 (2H, m)</td>
<td>27.8</td>
<td>10b</td>
<td>1.54 (1H, m)</td>
<td>25.9</td>
</tr>
<tr>
<td>3</td>
<td>1.30 (2H, m)</td>
<td>27.5</td>
<td>11a</td>
<td>1.52 (1H, m)</td>
<td>25.9</td>
</tr>
<tr>
<td>4</td>
<td>1.30 (2H, m)</td>
<td>30.2</td>
<td>11b</td>
<td>1.84 (1H, m)</td>
<td>28.4</td>
</tr>
<tr>
<td>5a</td>
<td>1.25 (1H, m)</td>
<td>25.0</td>
<td>12a</td>
<td>1.90 (1H, m)</td>
<td>24.1</td>
</tr>
<tr>
<td>5b</td>
<td>1.40 (1H, m)</td>
<td>12b</td>
<td>18</td>
<td>1.88 (1H, ddd, 13.1, 13.0, 13.0, 4.6)</td>
<td>13.0</td>
</tr>
<tr>
<td>6a</td>
<td>1.28 (1H, m)</td>
<td>32.8</td>
<td>13</td>
<td>3.07 (1H, br d, 13.1)</td>
<td>57.8</td>
</tr>
<tr>
<td>6b</td>
<td>1.56 (1H, m)</td>
<td>14</td>
<td>14</td>
<td>1.44 (2H, m)</td>
<td>39.9</td>
</tr>
<tr>
<td>7</td>
<td>2.91 (1H, m)</td>
<td>50.6</td>
<td>15</td>
<td>1.67 (1H, m)</td>
<td>26.0</td>
</tr>
<tr>
<td>8a</td>
<td>0.91 (1H, ddd, 12.7, 12.7, 12.7)</td>
<td>40.2</td>
<td>16</td>
<td>0.87 (3H, d, 6.4)</td>
<td>22.5</td>
</tr>
<tr>
<td>8b</td>
<td>1.67 (1H, m)</td>
<td>17</td>
<td>17</td>
<td>2.21 (3H, s)</td>
<td>45.6</td>
</tr>
<tr>
<td>9a</td>
<td>2.68 (1H, ddd, 13.6, 13.2, 3.2)</td>
<td>49.2</td>
<td>18</td>
<td>2.21 (3H, s)</td>
<td>45.6</td>
</tr>
<tr>
<td>9b</td>
<td>3.32 (1H, br d, 13.6)</td>
<td>32.8</td>
<td>19</td>
<td>3.32 (1H, br d, 13.6)</td>
<td>32.8</td>
</tr>
</tbody>
</table>

* Corresponding author. Tel./fax: +81 354985778. E-mail address: moritah@hoshi.ac.jp (H. Morita).
Hupermine A12 \(\{\text{EI}^2\Delta^2 + 39 (c 1.0, \text{MeOH})\}\) showed a pseudomolecular ion peak at \(m/z\ 281 (M+H)^+\) in the ESIMS. The molecular formula was established to be \(C_{18}H_{36}N_{2}\) by the HRESITOFMS \(m/z\ 281.2960 (M+H)^+, \Delta +0.3\ \text{mmu}\). Its \(^{13}\text{C}\) NMR spectrum (Table 1) revealed eighteen carbon signals due to three \(sp^3\) methines, twelve \(sp^3\) methylenes, and three methyl groups. Among them, two \(sp^3\) methines (\(\delta_C\ 57.8; \delta_H\ 3.07,\) and \(\delta_C\ 50.6; \delta_H\ 2.91),\) two \(sp^3\) methylenes (\(\delta_C\ 49.2; \delta_H\ 2.68\) and \(3.32,\) and \(\delta_C\ 60.0; \delta_H\ 2.23\) and \(2.23))\) and two methyl groups (\(\delta_C\ 45.6; \delta_H\ 2.21 \times 2\)) were ascribed to those bearing a nitrogen atom.

The connectivity of almost all hydrocarbons was deduced from a detailed analysis of the \(^1\text{H}–^1\text{H}\) COSY spectrum shown in Figure 1. The presence of a quinolizidine ring was indicated by the HMBC correlations of H-9b/C-11 and C-13, and H-9a/C-7. Furthermore, the HMBC correlation of N-Me protons (\(\delta_H\ 2.21)\)/C-1 (\(\delta_C\ 60.0))\) established the connection among C-1, C-17, and C-18 through a nitrogen atom. Thus, the gross structure of hupermine A was elucidated to be 1, possessing a quinolizidine ring system and a dimethylaminohexyl group at C-7.

The relative stereochemistry of 1 was elucidated by the NOESY correlations and the \(^3\text{J}_{\text{H-H}}\) coupling constants (Fig. 2). The NOESY correlation of H-7/H-12b indicated the \(\text{cis}\)-junction of the quinolizidine ring, \(\alpha\)-orientation of H-7, and \(\beta\)-orientation of H-13. The coupling pattern of H-8a (ddd, 12.7, 12.7, 12.7) suggested the orientation of H-15 to be \(\alpha\).

A plausible biogenetic pathway of hupermine A (1) was proposed as shown in Figure 3. Hupermine A might be generated from a quinolizidine unit (A) and a \(\Delta^1\)-piperideine unit through C\textsubscript{16}N\textsubscript{2}-type cermizine D13 followed by cleavage of C-5\textsubscript{A}N bond.

On the basis of biogenetic considerations, the absolute stereochemistry of 1 was presumed to have the same as those of cermizine D.

Hupermine A (1) showed weak cell growth inhibitory activity against HL-60 cells (IC\textsubscript{50} 39 \(\mu\text{M}\)).14 Apart from cytotoxicity assessment, 1 was found to be inactive in inhibiting inducible nitric oxide synthase (iNOS) activity of murine monocyctic cell line, RAW246.7 cells.15 The anti-lipid droplet accumulation activity of 1 on murine pre-adipocyte cell lines, MC3T3-G2/PA6 cells;16 and anti-melanin deposition activity on murine melanoma cell line, B16-F10 cells were also negative.17 Presently, 1 is being assessed for further biological activities.

Acknowledgments

This work was supported by Grants in-Aid for Scientific Research from JSPS and HIR UM-MOHE (F000009-21001).

Figure 1. Selected 2D NMR correlations for hupermine A (1).

Figure 2. Selected NOESY correlations for hupermine A (1).

Figure 3. Plausible biosynthetic pathway of 1.
References and notes

12. *Hupermine A* (1): colorless amorphous solid; δ H 3.93 (c 1.0, MeOH); IR (Zn–Se) v max 2929, 2856, and 1456 cm⁻¹; ESIMS m/z 281 (M+H)⁺; HRESMS m/z 281.2960 (M+H; calcd for C18H37N2, 281.2957).

