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In this paper, we propose the use of geometric moments to the field of nonblind image deblurring. Using
the developed relationship of geometric moments for original and blurred images, a mathematical for-
mulation based on the Euler-Lagrange identity and variational techniques is proposed. It uses an iter-
ative procedure to deblur the image in moment domain. The theoretical framework is validated by a set of
experiments. A comparative analysis of the results obtained using the spatial and moment domains are
evaluated using a quality assessment method known as the Blind/Reference-less Image Spatial Quality
Evaluator (BRISQUE). The results show that the proposed method yields a higher quality score when

compared with the spatial domain method for the same number of iterations.
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1. Introduction

Deblurring is often termed as an inverse problem, in
which the perceived blurred image, g(x, y) is modeled
as a 2D convolution of an original image f(x,y), with
a linear time invariant point spread function (PSF)
h(x,y), along with some additive noise n(x,y). Typi-
cally, research involving the deblurring of an image
can be classified as blind or nonblind problems. In
the case of nonblind problems, the PSF hA(x,y) is
assumed to be known. However, in the case of blind
deblurring, both the original image and the PSF are
unknown. Despite the narrower applicability of the
nonblind deblurring approach, it is already a chal-
lenging problem, as the convolution operators of
interest are typically ill-posed. As a result, this re-
search is ongoing [1-6]. Typical applications of image
deblurring lie in various areas of astronomy, optics,
and surveillance.
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In many scientific applications, the PSF is known.
For example in computational photography systems
[7], the PSF is known up to a scale. In addition, the
PSF due to the camera motion can be effectively
estimated from a single image, a sensor image, or
through an accelerometer [8,9]. In estimation of
the PSF due to one-dimensional motion, affine trans-
formation can be estimated automatically, or through
iterations [10-12].

Significant research has been done in the spatial
domain. However, in this paper, we propose an alter-
native approach, which uses geometric moments for
nonblind image deblurring. The paper has been
organized as follows. An introduction to the blind de-
convolution in moment domain is presented with
mathematical background in Section 2. Section 3
describes the experimental results, followed by a dis-
cussion. The last section concludes this work.

2. Nonblind Deblurring in Moment Domain

In this section, a deblurring algorithm in moment do-
main and that uses the Euler-Lagrange identity and
variational techniques are discussed. A Dblurred
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image possesses higher energy and, therefore, seeks
out a lower energy state. Thus, the goal of the varia-
tional approach is to construct an energy that de-
scribes the quality of the image and then minimize
that energy [13]. For this, a well-established theory
on partial differential equations (PDE) has been ap-
plied. The PDE approach treats an image as a func-
tion of space and time, which evolves gradually.
Finally, an estimation of the original image can be
obtained by iterating the PDE for a fixed number
of iterations.

Hence, we begin by using an established relation-
ship between geometric moments for an original and
blurred image. Here, the formulation has been dis-
cussed for 1D and then extended to 2D. For a 1D
N-length signal, f(x), the geometric moment can
be computed as

N
myl =) " af (). (D
x=1
As shown in [14], the relationship between the
degraded signal moments with the original signal
moments in 1D is given by

p
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where m# mfuf ), and m,(,h) are the moments of the de-
graded s1gna1 original signal, and PSF, respectively,
and p is the order of moment. Using Eq. (2), we can
now write the energy function, E, for a specific order,
p as
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where m(f ) is the estimated original signal. Taking

the derlvatlve of Eq. (3), we obtain
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Using the Euler—Lagrange identity, the PDE can
be modeled as

om{)  OE, -
ot omd

This variational procedure consists of iteratively
updating the PDE given in Eq. (5), which is consis-
tent with the gradient descent approach of E,.
Substituting Eq. (4) into Eq. (5) yields:
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Finally, by discretizing Eq. (6), we get
mP(n + 1) = m$ (n) - 2mP At
p p n
y (Z( ; )m(f)m( ) I(gg)) e
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where n is the number of iterations performed.
Similarly, for the 2D image, Eq. (7) can be gener-
alized as
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where p and g are the orders of moments.
Equation (8) is iterated either for a fixed number of
iterations or when the error criterion is met.
Contrast-to-spatial domain in this equation does not
require any regularization term. However, our
method needs an additional task of reconstructing
the image from mg ), which can be performed using
various techniques available in the literature [15,16].

3. Experimental Results and Discussions

In this section, we first show the validity of the pro-
posed method for 1D signals followed by a compara-
tive analysis with spatial domain. Experiments have
been performed on real astronomical images and
their perceptual quality has been evaluated through
the use of recently introduced quality metrics [17].

A. Deblurring of 1D Signals

To verify our mathematical formulation provided in
Eq. (7), we take an example of a 1D signal given as
f(x) ={2,1,4,3,5,1} and the PSF as h(x) = {0,1,0}.
The moments of the original image, PSF, and blurred
image are obtained using Eq. (1):

) = (16,43, 149,559, 2213,9103}, 9)
m = (1,11}, (10)
= {3,4,6, 10,18, 34,66, 130}, (11)

where p varies from 0 to 5.
By making use of observed blurred image mo-

ments, m& [Eq. (11)] and the moments of the PSF,

(h) [Eq. (10)], estimated original image moments,

m;,f) can be calculated using Eq. (7). From Fig. 1 it

can be observed that, after 200 and 30 iterations,
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(a) Estimated m(lf ) and (b) estimated m(zf ).

respectively, the estimated values of m? and m?’
come close to the original image moments of 43
and 149, as calculated in Eq. (9) forp = 1,2

Hence, the simulation results confirm the validity
of the proposed approach in Eq. (7).

B. Deblurring of 2D Images

Further carrying our discussion to 2D image process-
ing, a comparative performance of the proposed work
in moment domain with spatial domain is carried
out. In this experiment, the original image was
blurred using Gaussian PSF. Here, the image size
is 32 x 32 and p,q = 32. First, a comparison is per-
formed in terms of how fast the errors in spatial do-

mains |f(x,y) - f(x.y)| and |mg()1 - g?, in moments
domain converge. From Fig. 2 it can be observed that
the error drops rapidly in the case of moment domain
when compared with spatial domain, for a fixed num-
ber of iterations. In this paper, the number of itera-
tions performed is 500. If the value of ¢ used in
computation is estimated to be in the range of
+10%, then this will affect the aforementioned error.
Figure 3 shows the plot of the error with estimated o.
Here, the ideal value of ¢ is 0.5. Two things can be
observed here. First, the variation in the error is
greater in the case of spatial domain. Second, with
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Fig. 2. Error versus iterations.

the regularization parameter, the minimum value
of error changes in spatial domain, hence making

the quality of an image dependent on the regulariza-
tion term.

C. Comparative Analysis

A comparative study of the image obtained through
both the domains is carried out. In this work, image
quality assessment is used to predict perceptual im-
age quality scores without access to reference im-
ages. One such technique is known as the Blind/
Reference-less Image Spatial Quality Evaluator
(BRISQUE) [17], which is used to quantify the qual-
ity of an image and gives an objective score. A lower
score indicates a higher quality image. Table 1 shows
the 32 x 32 binary image of the letter E and its
blurred images. Using this original image, two sets
of blurred images were created. In each case the ¢
and mask size w are (6=0.5, w=5x5) and
(6 =1.167, w="T7x17), respectively. By applying
BRISQUE to each set of blurred images, it can be ob-
served that the objective score obtained using mo-
ment domain is less than the spatial domain.
Hence, it shows that the perceptual quality of an im-
age is better in the case of moment domain. In the
next experiment, we use astronomical images of
sizes 64 x 64 and 128 x 128. Two data sets of blurred
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Fig. 3. Error variation with estimated o.

1 April 2014 / Vol. 53, No. 10 / APPLIED OPTICS B169



Table 1. Deblurring Using Spatial and Moment Domain for Binary
Images with Different Gaussian Kernel and Mask Size with
Corresponding BRISQUE

Deblurred Images

Blurred Spatial Moment Original
Images Domain Domain Images
c=0.5,

w=5x5

BRISQUE 58.4590 52.4411

o; = 1.167,

w="7x17

BRISQUE 77.2305 71.0035

Table 2. Deblurring Using Spatial and Moment Domain Approaches for
Test Images of Different Size, Gaussian Kernel, Mask Size, with
Corresponding BRISQUE

Deblurred Images

Blurred
Images

Moment
Domain

Spatial
Domain

Original
Images

Size = 64 x 64

o = 0.833,
w=>5
BRISQUE 31.6582 26.4520
- -
o = 2.167, Size = 64 x 64
w=13
BRISQUE 67.1250 61.6036

o= 1667, Size = 128 x 128
w="17
BRISQUE 48.2390 42.1376

o =3.167,

a -
-\ i
‘
w =19

BRISQUE

Size = 128 x 128

75.1275

71.8023
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images are created, with (¢ = 0.833, w =5 x5) and
(6 =2.167, w=13x13) for 64 x64 image, and
(6=1.667, w=TxT7) and (c = 3.167, w =19x 19)
for the 128 x 128 image. Values of mask size (w)
and sigma (o) are selected on the basis of [18]. Table 2
shows the results of the BRISQUE score for both the
spatial and moment domains. It can be seen that the
BRISQUE score in the case of the moment domain is
less than that for the spatial domain.

4. Conclusion

The main objective of this paper is not to claim that
earlier works done in spatial domain are not effi-
cient, but rather explore the moments in the field
of deblurring. We presented a novel method of doing
nonblind deblurring in moment domain. A math-
ematical formulation using the FEuler—Lagrange
identity and variational techniques is proposed to de-
blur the image in moment domain. An advantage of
deblurring the image in moment domain is that it
requires less iteration as compared with the spatial
domain method and does not need the regularization
parameter. A comparative analysis of the results ob-
tained using the spatial and moment domains is con-
ducted using BRISQUE. Experiments demonstrate
that better perceptual quality was obtained in mo-
ment domain. However, executing PDE in moment
domain comes at the cost of large execution time,
which can be reduced to some extent using vectorized
codes in MATLAB.

We acknowledge the University of Malaya for
funding this work. The research has been carried
out under HIR grant (UM.C/625/1/HIR/MOHE/
ENG/42).
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