A review of the islanding detection methods in grid-connected PV inverters

Ku Nurul Edhura Ku Ahmad *, Jeyraj Selvaraj, Nasrudin Abd Rahim

UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, University of Malaya, 59950 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history:
Received 8 December 2011
Received in revised form 10 January 2013
Accepted 14 January 2013

Keywords:
Islanding detection methods
Distributed generation
Non-detection zone
Islanding standards
Inverter

ABSTRACT

Islanding is undesired because it may impair the safety of maintenance service workers and/or damage load equipment through unsynchronized re-closure. In principle, islanding detection is the monitoring of islanding—indicating changes in inverter output parameters or other system parameters. This paper aims to aid design efforts through its comprehensive review of islanding detection methods (comparing their non-detection zones and detection speeds) and anti-islanding standards. As a result, this paper shall provide a handful information and clearer vision for researchers to determine the best method for their product.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1. Introduction ... 757
2. Islanding detection methods .. 758
 2.1. Passive islanding ... 758
 2.1.1. Over/under voltage and over/under frequency (OV/UOV and OUF/UF) 758
 2.1.2. Phase jump detection .. 758
 2.1.3. Monitoring of voltage and current harmonics .. 758
 2.1.4. Rate of change of frequency (ROCOF) ... 758
 2.1.5. Rate of change of power output (ROCOF) ... 759
 2.2. Active islanding ... 759
 2.2.1. Impedance measurement (IM) .. 759
 2.2.2. Sliding mode frequency shift (SMFS) or active phase shift (APS) 759
 2.2.3. Sandia frequency shift (SFS) or active frequency drift with positive feedback ... 759
 2.2.4. Reactive power export error detection (RPEED) ... 759
 2.3. Remote techniques .. 759
 2.3.1. Power line carrier communication (PLCC) ... 760
 2.3.2. Signal produced by disconnect (SPD) .. 760
 2.3.3. Supervisory control and data acquisition (SCADA) 760
3. Anti-islanding standards ... 760
4. NDZ ... 760

Abbreviations: PV, Photovoltaic; DG, Distributed Generation; NDZ, None detection zone; PCC, Point of common coupling; Q, Quality factor; LPS, Load parameter space; PMS, Power mismatch space; I_{sc}, Negative sequence current; OV/UOV, Over/under voltage; OUF/UF, Over/under frequency; PJJD, Phase jump detection; ROCOF, Rate of change of power output; ROCOF, Rate of Change of Frequency; THD, Total Harmonic Distortion; PWM, Pulse Width Modulation; IM, Impedance measurement; PLL, Phase locked loop; SMFS, Sliding mode frequency shift; DFT, Digital Fourier transformation; PI, Proportional Integral; m, Modulation frequency; MPPT, Maximum power point tracking; VSC, Voltage source converter; UPS, Unified phase signal processor; ST, S-Transform; WT, Wavelet transform; APS, Active phase shift; SFS, Sandia frequency shift; AFD, Active frequency drift; RPEED, Reactive power export error detection; PLCC, Power line carrier communication; T, Transmitter; R, Receiver; SPD, Signal produced by disconnect; SCADA, Supervisory control and data acquisition; V_{ref}, Voltage at point of common coupling; V_{load}, Load voltage; Z_{ref}, Impedance at point of common coupling; Z_{load}, Load impedance; SNR, Signal-to-Noise Ratio; V_{min}, Minimum pre-set voltage value; V_{max}, Maximum pre-set voltage value; RPS, Real power shift; Z_{ref}, A set point to detect islanding with RPS; V_{load}, Average voltage of 5 phase voltages; THD_{av}, Average of total harmonic distortion of phase-A current; V_{avg}

* Corresponding author: Tel.: +60 322463246; fax: +60 322463257
E-mail address: edhura@gmail.com (K.N.E. Ku Ahmad)

1364-0321/$-see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.rser.2013.01.018