Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

by: S.V. Razavi, M.Z. Jumaat, E.S.H. Ahmed, P. Mohammadi

Computers and Concrete, Vol. 10, No. 4. (2012), pp. 379-390 Key: 8n

Abstract

In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percent of scoria instead of sand and 0.55 water-cement ratio and 350 kg/m³ cement content is investigated. The experimental result showed 7.9%, 16.7% and 49 decrease in compressive strength, tensile strength and mortar density, respectively, by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data are applied for artificial neural network (ANN) generation using generalized regression neural network (GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with 2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum correlation of determination close to 1.

Export records

Notes for this article (1 public)

Added 2013-01-14 07:50:03 - [public]

Export Date: 6 January 2013 Source: Scopus Language of Original Document: English Correspondence Address: Razavi, S.V.; Jundi-Shapur University of Technology, Dezful, Iran; email: vahidrazavy@yahoo.com

References:

Notes for this article (1 public)

There are no reviews yet [Be the first to rate and review this article]

Find related articles with these CiteULike tags

Posting History

Related: Library Management System | Endnote 5 | Writing Papers | APA Writing

Privacy Statement | Terms & Conditions

CiteULike uses cookies, some of which may already have been set. Read about how we use cookies. You may hide this.