On Classification of Real Hypersurfaces in a Complex Space Form with η-recurrent Shape Operator

Tee-How LOO

University of Malaya

(Communicated by K. Matsuzaki)

Abstract. In this paper, we classify real hypersurfaces in a non-flat complex space with η-recurrent shape operator.

1. Introduction

Let $M_n(c)$ be an n-dimensional complete and simply connected non-flat complex space form with complex structure J of constant holomorphic sectional curvature $4c$, i.e., it is either a complex projective space $\mathbb{C}P^n$ (for $c > 0$), or a complex hyperbolic space $\mathbb{C}H^n$ (for $c < 0$).

Suppose M is a connected real hypersurface in $M_n(c)$ and N is a unit normal vector field of M. Let $\xi = -JN$ be the structure vector field and A the shape operator on M. A Hopf hypersurface M in $M_n(c)$ is characterized by the condition that the structure vector field ξ is principal, i.e., $A\xi = \alpha \xi$, and it can be shown that this principal curvature α is a constant.

Typical examples of Hopf hypersurfaces are those with constant principal curvatures, nowadays, so-called real hypersurfaces of type A_1, A_2, B, C, D and E (resp. of type A_0, A_1, A_2 and B) in $\mathbb{C}P^n$ (resp. in $\mathbb{C}H^n$) (cf. [14], [12]). These real hypersurfaces can be expressed as tubes of constant radius over certain holomorphic or totally real submanifolds, and a self-tube in the ambient space (cf. [1], [2], [5]).

Other than these Hopf hypersurfaces, another example of real hypersurfaces in $M_n(c)$ are the class of ruled real hypersurfaces. Ruled real hypersurfaces in $M_n(c)$ are characterized by having a one-codimensional foliation whose leaves are complex totally geodesic hyperplanes in $M_n(c)$. The geometry of ruled real hypersurfaces in $M_n(c)$ was studied in [10].

The study of real hypersurfaces in a non-flat complex space form has been an active field in the past few decades. One of the first results is the non-existence of real hypersurfaces with parallel shape operator A, i.e., $\nabla A = 0$, where ∇ is the Levi-Civita connection of M.

Received September 17, 2013; revised February 28, 2014

2010 Mathematics Subject Classification: 53B25 (Primary), 53C15 (Secondary)

Key words and phrases: complex space form, Hopf hypersurfaces, ruled real hypersurfaces, η-recurrent shape operator

This work was supported in part by the UMRG research grant (Grant No. RG163/11AFR).
This fact is an immediate consequence of the Codazzi equation of such a real hypersurface. Motivated by this, Kimura and Maeda [6] studied the weaker notion of η-parallelism. The shape operator A is said to be η-parallel if it satisfies the following condition:

$$\langle (\nabla_X A) Y, Z \rangle = 0$$

for any $X, Y, Z \in \Gamma(D)$, where $D := \text{Span}\{\xi\}^\perp$, called the (maximal) holomorphic distribution on M. A number of results concerning real hypersurfaces with η-parallel shape operator have been obtained (cf. [6], [7], [8], [13]). In particular, a complete classification of real hypersurfaces in $M_n(c)$ with η-parallel shape operator was proved in [8] (cf. Theorem 4).

In another way to weaken the parallelism, Hamada [3] studied the recurrence of the shape operator of real hypersurfaces in $\mathbb{C}P^n$. The shape operator A is said to be recurrent if $\nabla A = A \otimes \omega$ for some 1-form ω in M. It was showed in [3] that the recurrence is also too strong to be satisfied by the shape operator of real hypersurfaces in $\mathbb{C}P^n$.

The shape operator A is said to be η-recurrent if there is a 1-form ω on M such that

$$\langle (\nabla_X A) Y, Z \rangle = \omega(X)\langle AX, Y \rangle$$

for any $X, Y, Z \in \Gamma(D)$. The η-parallelism and recurrence can be considered as special cases of η-recurrence. Hopf hypersurfaces in $M_n(c)$ with η-recurrent shape operator were classified in [4, 11].

THEOREM 1 ([4, 11]). Let M be a Hopf hypersurface in $M_n(c)$, $n \geq 3$, $c \neq 0$. Then the shape operator A is η-recurrent if and only if M is locally congruent to one of the following spaces:

(a) For $c > 0$:

(A1) a tube over hyperplane $\mathbb{C}P_{n-1}$;
(A2) a tube over totally geodesic $\mathbb{C}P_k$, where $1 \leq k \leq n - 2$;
(B) a tube over complex quadric Q_{n-1}.

(b) For $c < 0$:

(A0) a horosphere;
(A1) a geodesic hypersphere or a tube over hyperplane $\mathbb{C}H_{n-1}$;
(A2) a tube over totally geodesic $\mathbb{C}H_k$, where $1 \leq k \leq n - 2$;
(B) a tube over totally real hyperbolic space \mathbb{RH}^n.

The purpose of this paper is to improve the above theorem and classify real hypersurfaces in $M_n(c)$ with η-recurrent shape operator, i.e., we prove the following theorem.

THEOREM 2. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$, $c \neq 0$. Then its shape operator A is η-recurrent if and only if M is locally congruent to a ruled real hypersurface or one of the following spaces:

(a) For $c > 0$:

(A1) a tube over hyperplane $\mathbb{C}P_{n-1}$;
(A2) a tube over totally geodesic $\mathbb{C}P_k$, where $1 \leq k \leq n - 2$;
(B) a tube over complex quadric Q_{n-1}.

(b) For $c < 0$:

(A)
(A0) a horosphere;
(A1) a geodesic hypersphere or a tube over hyperplane CH_{n-1};
(A2) a tube over totally geodesic CH_k, where $1 \leq k \leq n - 2$;
(B) a tube over totally real hyperbolic space RH^n.

2. Preliminaries

In this section we shall recall some fundamental identities and known results in the theory of real hypersurfaces in a complex space form and fix some notations.

Let M be a connected real hypersurface isometrically immersed in $M_n(c)$, $n \geq 3$, N a unit normal vector field on M and $\langle \cdot, \cdot \rangle$ the Riemannian metric on M. We define a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η by

$$JX = \phi X + \eta(X)N, \quad JN = -\xi, \quad \eta(X) = \langle \xi, X \rangle,$$

for any $X \in \Gamma(TM)$. Then we have

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1. \quad (1)$$

Denote by ∇ the Levi-Civita connection and A the shape operator on M. Then

$$\nabla_X \phi Y = \eta(Y)AX - \langle AX, Y \rangle \xi, \quad \nabla_X \xi = \phi AX \quad (2)$$

for any $X, Y \in \Gamma(TM)$.

Let R be the curvature tensor of M. Then the equations of Gauss and Codazzi are given respectively by

$$R(X, Y)Z = c\{\langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y - 2\langle \phi X, Y \rangle \phi Z + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY \}
$$

$$A_{\nabla X}Y - (\nabla Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2\langle \phi X, Y \rangle \xi\}.$$

This following lemma is needed in the next section.

Lemma 3 ([9]). Let M be a non-Hopf real hypersurface in $M_n(c)$, $n \geq 3$, $c \neq 0$. Suppose $A\xi = \alpha\xi + \beta U$ and $AU = \beta\xi + \gamma U$, where $\beta = ||\phi A\xi|| (> 0)$ and $U = -\beta^{-1}\phi^2 A\xi$. If there exists a unit vector field $Z \perp \xi, U, \phi U$ such that $AZ = \lambda Z$ and $A\phi Z = \lambda\phi Z$, then

$$(\lambda - \gamma)(\lambda^2 - \alpha\lambda - c) - \beta^2\lambda = 0.$$

Finally, we state without proof the following result concerning real hypersurfaces in $M_n(c)$ with η-parallel shape operator.
THEOREM 4 ([8]). Let M be a real hypersurface in $M_n(c)$, $n \geq 3$, $c \neq 0$. Then its shape operator A is η-parallel if and only if M is locally congruent to a ruled real hypersurface or one of the following spaces:

(a) For $c > 0$:
- (A_1) a tube over hyperplane $CP_{n-1};$
- (A_2) a tube over totally geodesic CP_k, where $1 \leq k \leq n - 2$;
- (B) a tube over complex quadric Q_{n-1}.

(b) For $c < 0$:
- (A_0) a horosphere;
- (A_1) a geodesic hypersphere or a tube over hyperplane $CH_{n-1};$
- (A_2) a tube over totally geodesic CH_k, where $1 \leq k \leq n - 2$;
- (B) a tube over totally real hyperbolic space RH^n.

3. Proof of Theorem 2

Let M be a real hypersurface in $M_n(c)$, $n \geq 3$, with η-recurrent shape operator, i.e.,

$$((\nabla_X A)Y, Z) = \omega(X)(AY, Z)$$

(3)

for any $X, Y, Z \in \Gamma(D)$, where ω is a 1-form on M. By virtue of Theorem 1, we only need to consider the non-Hopf case. In this case, $\beta := \|\phi A\xi\| > 0$ and we may define a unit vector field $U := -\beta^{-1}\phi^2 A\xi$. It suffices to prove that A is η-parallel or $\omega = 0$ according to Theorem 4. Suppose to the contrary that $\omega \neq 0$. Let W' be the vector field dual to ω and $b := \|\phi W'\|$. Then $b > 0$ at some open subset G of M. Since we only study local geometric property, we may identify M with this open subset G and define a unit vector field $W = -b^{-1}\phi^2 W'$. Hence (3) can be rewritten as

$$((\nabla_X A)Y, Z) = b(X, W)(AY, Z)$$

(4)

for any $X, Y, Z \in \Gamma(D)$. It follow from the Codazzi equation, (4) and the fact $b > 0$ that

$$\langle X, W \rangle \langle AY, Z \rangle = \langle Y, W \rangle \langle AX, Z \rangle.$$

By putting $X = Z = W$ in the above equation, we obtain $\phi AW = \gamma \phi W$, where $\gamma = \langle AW, W \rangle$. Hence, after putting $X = W$ in the above equation, we have

$$\langle AY, Z \rangle = \gamma \langle Y, W \rangle \langle Z, W \rangle$$

(5)

for any $Y, Z \in \Gamma(D)$.

By (4) and (5), we see that $\gamma = 0$ is equivalent to $\omega = 0$. Hence, we get $\gamma \neq 0$. By differentiating covariantly both sides of the above equation in the direction of $X \in \Gamma(D)$; with the help of (1), (2) and 5, we have
\[(\nabla_X A)Y, Z - \beta(Y, \phi A X)\langle U, Z \rangle - \beta(Z, \phi A X)\langle Y, U \rangle\]
\[= d\gamma(X)\langle Y, W \rangle\langle Z, W \rangle + \gamma\langle Y, \nabla_X W \rangle\langle Z, W \rangle + \gamma\langle Y, W \rangle\langle Z, \nabla_X W \rangle. \quad (6)\]

By using (4) and (5), the above equation becomes
\[\gamma b\langle X, W \rangle\langle Y, W \rangle\langle Z, W \rangle - \gamma\beta\langle Y, \phi W \rangle\langle X, W \rangle\langle U, Z \rangle - \gamma\beta\langle Z, \phi W \rangle\langle X, W \rangle\langle Y, U \rangle\]
\[= d\gamma(X)\langle Y, W \rangle\langle Z, W \rangle + \gamma\langle Y, \nabla_X W \rangle\langle Z, W \rangle + \gamma\langle Y, W \rangle\langle Z, \nabla_X W \rangle. \quad (7)\]

If we let \(Y = Z = W\) in the above equation, then \(\gamma b\langle X, W \rangle = d\gamma(X)\), for any \(X \in \Gamma(D)\).

With this fact, (7) reduces to
\[-\beta\langle Y, \phi W \rangle\langle X, W \rangle\langle U, Z \rangle - \beta\langle Z, \phi W \rangle\langle X, W \rangle\langle Y, U \rangle\]
\[= \langle Y, \nabla_X W \rangle\langle Z, W \rangle + \langle Y, W \rangle\langle Z, \nabla_X W \rangle. \quad (8)\]

Next, by letting \(X = W, Y = Z = \phi W\) in (8), we have \(\langle \phi W, U \rangle = 0\). Finally, after putting \(X = W\) and \(Z = \phi W\) in (8), yields \(-\beta U = \langle \phi W, \nabla_W W \rangle W\). Since both \(U\) and \(W\) are unit vector fields, we may, without loss of generality, assume that \(U = W\). This, together with (5), yields \(A U = \beta \xi + \gamma U\) and \(A Z = 0\), for any \(Z \perp U, \xi\). According to Lemma 3, we can see that \(\gamma = 0\). This contradicts the fact that \(\gamma \neq 0\) and so the proof is completed.

The following result has been obtained in [7].

THEOREM 5 ([7]). Let \(M\) be a real hypersurface in \(M_n(c)\), \(n \geq 3, c \neq 0\). Then \(M\) satisfies
\[(\nabla_X A)Y = \{-c\langle \phi X, Y \rangle + \eta(A Y)\langle X, \phi A \xi \rangle + \eta(A X)\langle Y, \phi A \xi \rangle + \varepsilon \langle (\phi A - A \phi)X, Y \rangle\}\xi \]
for any \(X, Y \in \Gamma(D)\), where \(\varepsilon\) is a constant, if and only if \(M\) is locally congruent to one of the spaces stated in Theorem 2.

By Theorem 2 and Theorem 5, we can characterize the \(\eta\)-recurrence of \(A\) by an expression of the covariant derivative of \(A\) on the holomorphic distribution.

COROLLARY 6. Let \(M\) be a real hypersurface in \(M_n(c)\), \(n \geq 3, c \neq 0\). Then the following are equivalent:

1. the shape operator \(A\) is \(\eta\)-recurrent;
2. \((\nabla_X A)Y = \{-c\langle \phi X, Y \rangle + \eta(A Y)\langle X, \phi A \xi \rangle + \eta(A X)\langle Y, \phi A \xi \rangle + \varepsilon \langle (\phi A - A \phi)X, Y \rangle\}\xi, \)
for any \(X, Y \in \Gamma(D)\), where \(\varepsilon\) is a constant;
3. \(M\) is locally congruent to one of the spaces stated in Theorem 2.

ACKNOWLEDGEMENT. The author is thankful to the referee for several valuable comments towards the improvement of the present paper.
References

Present Address:
INSTITUTE OF MATHEMATICAL SCIENCES,
UNIVERSITY OF MALAYA,
50603 KUALA LUMPUR, MALAYSIA.
e-mail: looth@um.edu.my