Real hypersurfaces in a complex space form with η-parallel shape operator

S. H. Kon · Tee-How Loo

Abstract In this paper, we classify the real hypersurfaces in a non-flat complex space form with η-parallel shape operator.

Keywords Complex space forms · Hopf hypersurfaces · Ruled real hypersurfaces · η-parallel shape operator

Mathematics Subject Classification (2000) 53C40 · 53C15

1 Introduction

One of the most fertile subjects in differential geometry is the theory of real hypersurfaces in a complex space form. A complex space form can be considered as a natural generalization of a space of constant curvature with a complex structure J. Its complex structure J imposes significant restrictions on the geometry of its real hypersurfaces. For instance, there exist no totally umbilical real hypersurfaces and real hypersurfaces with parallel shape operator in a non-flat complex space form. Weaker ideas of “η-” conditions, such as η-umbilical and η-parallelism, have been considered due to these restrictions.

One of the main lines of research deal with characterizations of real hypersurfaces in a complex space form under these restrictions. This paper is a contribution in this direction. Our objective is to classify real hypersurfaces in a non-flat complex space form with η-parallel shape operator.
We shall now review some results in the theory of real hypersurfaces in a non-flat complex space form in order to describe this more precisely and state our main theorem.

By $M_n(c)$ we denote an n-dimensional complete and simply connected non-flat complex space form with constant holomorphic sectional curvature $4c$, i.e., it is either a complex projective space $\mathbb{C}P^n$ or a complex hyperbolic space $\mathbb{C}H^n$ (according to as the holomorphic sectional curvature $4c$ is positive or negative). Let M be a connected real hypersurface in $M_n(c)$ and N a unit normal vector field of M. We denote by $\Gamma(V)$ the module of all differentiable sections on the vector bundle V over M. Then the complex structure J of $M_n(c)$ induces an almost contact metric structure $(\phi, \xi, \eta, \langle, \rangle)$ on M, i.e.,

$$JX = \phi X + \eta(X)\xi, \quad J\xi = -\eta, \quad \eta(X) = \langle \xi, X \rangle$$

for any $X \in \Gamma(TM)$.

A real hypersurface is said to be Hopf if the structure vector field ξ is principal, i.e., $A\xi = \alpha \xi$, for some function α on M. In 1973, Takagi [16] classified homogeneous real hypersurfaces in $\mathbb{C}P^n$ into six classes of Hopf hypersurfaces with constant principal curvatures. Having extended the results of Cecil and Ryan in [3], Kimura [6] showed that the converse of Takagi’s result is also true, i.e.,

Theorem 1 ([6]) Let M be a Hopf hypersurface of $\mathbb{C}P^n$, $n \geq 2$, with constant principal curvatures. Then M is locally congruent to one of the following hypersurfaces:

(A_1) geodesic spheres,
(A_2) tubes over totally geodesic $\mathbb{C}P^p$, for $p \in \{1, \ldots, n-2\}$,
(B) tubes over complex quadrics Q^{n-1} and totally real projective space $\mathbb{R}P^n$,
(C) tubes over the Serge embedding of $\mathbb{C}P^1 \times \mathbb{C}P^m$, where $2m + 1 = n$ and $n \geq 5$,
(D) tubes over the Plücker embedding of the complex Grassmann manifold $G_{2,5}$, where $n = 9$.
(E) tubes over the canonical embedding of the Hermitian symmetric space $SO(10)/U(5)$, where $n = 15$.

Remark 1 Let M_1 and M_2 be two submanifolds of a Riemannian manifold \tilde{M}. We say that M_1 is locally congruent to M_2 if there is an isometry f on \tilde{M} such that $f(M_1)$ is an open subset of M_2. An analogous result in $\mathbb{C}H^n$ has also been proven by Berndt [2].

Theorem 2 ([2]) Let M be a Hopf hypersurface of $\mathbb{C}H^n$, $n \geq 2$, with constant principal curvatures. Then M is locally congruent to one of the following hypersurfaces:

(A_0) horospheres,
(A_1) geodesic spheres and tubes over totally geodesic complex hyperbolic hyperplanes,
(A_2) tubes over totally geodesic $\mathbb{C}H^p$, for $p \in \{1, \ldots, n-2\}$,
(B) tubes over totally real hyperbolic space $\mathbb{R}H^n$.

In what follows, by real hypersurfaces of type A, we mean of type A_1, A_2 (resp. of type A_0, A_1, A_2) for $c > 0$ (resp. for $c < 0$).

From a result of Tashiro and Tachibana [18], we see that there are no totally umbilical hypersurfaces in $M_n(c)$. A weaker notion of η-umbilical hypersurfaces was hence considered. A real hypersurface M is said to be totally η-umbilical if the shape operator satisfies

$$AX = aX + b\eta(X)\xi$$
for any $X \in \Gamma(TM)$, where a and b are functions on M. The classification of totally η-umbilical real hypersurfaces in a complex projective space has been obtained by Kon (cf. [8]), and then extended by Montiel (cf. [12]) to complex hyperbolic ambient space.

The shape operator A is said to be η-parallel if

$$\langle (\nabla_X A) Y, Z \rangle = 0$$

for any $X, Y, Z \in \Gamma(D)$, where $D := \text{span}(\xi) \perp$ is the holomorphic distribution on M and ∇ is the Levi-Civita connection on M. The η-parallelism condition on the shape operator was first introduced by Kimura and Maeda in [7]. The study of this condition was motivated by the non-existence of real hypersurfaces in $M_n(c)$ with parallel shape operator.

In the same paper, Kimura and Maeda classified Hopf hypersurfaces in a complex projective space with η-parallel shape operator. Soon after, this result was extended to the setting of real hypersurfaces in a complex hyperbolic space (cf. [15]).

Theorem 3 ([7,13,15]) Let M be a Hopf hypersurface in $M_n(c), n \geq 2$. Then M has η-parallel shape operator if and only if M is locally congruent to a real hypersurface of type A or B.

Another example of real hypersurfaces in $M_n(c)$ with η-parallel shape operator is the class of ruled real hypersurfaces. Ruled real hypersurfaces in $M_n(c)$ are characterized by having a one-codimensional foliation whose leaves are totally geodesic complex hypersurfaces in $M_n(c)$ (cf. [10]).

With an additional assumption on the integrability of the holomorphic distribution D, real hypersurfaces in $M_n(c)$ with η-parallel shape operator appeared to be the ruled real hypersurfaces.

Theorem 4 ([1,7]) Let M be a real hypersurface in $M_n(c), n \geq 3$. Suppose M satisfies the following two conditions:

1. $\phi(\phi A + A\phi)\phi = 0$, i.e., the holomorphic distribution D is integrable;
2. the shape operator A is η-parallel.

Then M is locally congruent to a ruled real hypersurface.

A number of results concerning real hypersurfaces in a non-flat complex space form with η-parallel shape operator has been obtained (for instance, [1,4,5,9,14], etc). In particular, we have the following theorem.

Theorem 5 ([9]) Let M be a real hypersurface in $M_n(c), n \geq 3$, with η-parallel shape operator A. If $\phi A\phi$ and $\phi^2 A\phi^2$ commute then M is locally congruent to a ruled real hypersurface, or a real hypersurface of type A or B.

The complete classification of real hypersurfaces in a non-flat complex space form with η-parallel shape operator remains open up to this point. It is interesting to note that the real hypersurfaces appearing in the list of these characterizations are those of type A, B and ruled real hypersurfaces. This raises the following question: Does the class of real hypersurfaces in a non-flat complex space form with η-parallel shape operator consist of those of type A, B and ruled real hypersurfaces? In this paper, we shall answer this question affirmatively. More precisely, we shall improve Theorem 5 into the following.

Theorem 6 Let M be a real hypersurface in a complex space form $M_n(c), n \geq 3$. Then the shape operator A is η-parallel if and only if M is locally congruent to a ruled real hypersurface, or a real hypersurface of type A or $B.
This paper is organized as follows. In Sect. 2 we fix some notations and review some known results on real hypersurfaces in $M_n(c)$. We characterize real hypersurfaces in $M_n(c)$ with η-parallel shape operator under the assumption that $\phi A\phi$ and $\phi^2 A\phi^2$ share an eigenvector in D in the next section. Section 4 is devoted to a characterization of ruled real hypersurfaces in $M_n(c)$. In Sect. 5 we prove the nonexistence of real hypersurfaces with η-parallel shape operator in $M_n(c)$ with no common eigenvectors in D for $\phi A\phi$ and $\phi^2 A\phi^2$. Finally, the classification of real hypersurfaces in $M_n(c)$ with η-parallel shape operator is proved in Sect. 6.

2 Preliminaries

In this section we shall fix some notations and recall some known results on real hypersurfaces in a non-flat complex space form.

Let M be a connected real hypersurface in $M_n(c)$. Then the induced almost contact metric structure $(\phi, \xi, \eta, \langle, \rangle)$ on M has the following properties

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1 \quad (1)$$

$$(\nabla_X \phi)Y = \eta(Y)AX - \langle AX, Y \rangle\xi, \quad \nabla_X \xi = \phi AX \quad (2)$$

for any $X, Y \in \Gamma(TM)$, where ∇ is the Levi-Civita connection on M. Let R be the curvature tensor of M. Then the equations of Gauss and Codazzi are given respectively by

$$R(X, Y)Z = c\{\langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y$$

$$-2\langle \phi X, Y \rangle \phi Z + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY$$

$$(\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2\langle \phi X, Y \rangle\xi\}.$$

The second order covariant derivative $\nabla^2 A$ on the shape operator A is defined by

$$(\nabla_X Y)A = \nabla_X ((\nabla_Y A)Z) - (\nabla_{\nabla_X Y} A)Z - (\nabla_Y A)\nabla_X Z.$$

The following lemma characterizes ruled real hypersurfaces in $M_n(c)$.

Lemma 1 ([11]) Let M be a real hypersurface in $M_n(c), n \geq 2$. Then M is a ruled real hypersurface if and only if $\phi A\phi = 0$, or equivalently $\langle AX, Y \rangle = 0$, for any $X, Y \in \Gamma(D)$.

The following lemma plays a key role in this paper.

Lemma 2 ([9]) Let M be a real hypersurface in $M_n(c)$ with η-parallel shape operator A, and let $F := \nabla_\xi A$. Then

$$c\{\langle Y, AZ \rangle \langle X, W \rangle - \langle X, AZ \rangle \langle Y, W \rangle$$

$$+ \langle \phi Y, AZ \rangle \langle \phi X, W \rangle - \langle \phi X, AZ \rangle \langle \phi Y, W \rangle - 2 \langle \phi X, Y \rangle \langle \phi AZ, W \rangle$$

$$- \langle Y, Z \rangle \langle X, AW \rangle + \langle X, Z \rangle \langle Y, AW \rangle$$

$$- \langle \phi Y, Z \rangle \langle \phi X, AW \rangle + \langle \phi X, Z \rangle \langle \phi Y, AW \rangle + 2 \langle \phi Y, Y \rangle \langle \phi Z, AW \rangle\}$$

$$+ \langle AY, AZ \rangle \langle AX, W \rangle - \langle AX, AZ \rangle \langle AY, W \rangle$$

$$- \langle AY, Z \rangle \langle AX, AW \rangle + \langle AX, Z \rangle \langle AY, AW \rangle$$

$$= c\{\langle Z, \phi AY \rangle \langle \phi X, W \rangle + \langle W, \phi AY \rangle \langle \phi X, Z \rangle$$
Finally, by the Ricci identity
\[(Z, \phi AX)\langle \phi Y, W \rangle - (W, \phi AX)\langle \phi Y, Z \rangle \]
\[+ (Y, \phi AX)\langle FZ, W \rangle + (Z, \phi AX)\langle FY, W \rangle + (W, \phi AX)\langle FZ, Y \rangle \]
\[- (X, \phi AY)\langle FZ, W \rangle - (Z, \phi AY)\langle FX, W \rangle - (W, \phi AY)\langle FZ, X \rangle \]
for any \(X, Y, Z, W \in \Gamma(D) \).

Proof For any \(Y, Z, W \in \Gamma(D) \), by differentiating the following equation covariantly
\[((\nabla_Y A)Z, W) = 0 \]
in the direction of \(X \in \Gamma(D) \), we obtain
\[((\nabla^2_{XY} A)Z + (\nabla_{\nabla_X Y} A)Z + (\nabla_Y A)\nabla_X Z, W) + ((\nabla_Y A)Z, \nabla_X W) = 0. \]
From the \(\eta \)-parallelism condition and (2), the above equation reduces to
\[((\nabla^2_{XY} A)Z, W) = (Y, \phi AX)\langle (\nabla_\xi A)Z, W \rangle + (Z, \phi AX)\langle (\nabla_Y A)\xi, W \rangle \]
\[+ (W, \phi AX)\langle (\nabla_Y A)Z, \xi \rangle. \]
Furthermore, by using the Codazzi equation, the above equation becomes
\[((\nabla^2_{XY} A)Z, W) = (Y, \phi AX)\langle FZ, W \rangle + (Z, \phi AX)\langle FY, W \rangle - c\langle \phi Y, W \rangle \]
\[+ (W, \phi AX)\langle FY, Z \rangle - c\langle \phi Y, Z \rangle. \]
Finally, by the Ricci identity \((R(X, Y)A)Z = (\nabla^2_{XY} A)Z - (\nabla^2_{YX} A)Z \) and the above equation, we obtain the lemma.

3 Real hypersurfaces with common eigenvectors in \(D \) for both \(\phi^2 A\phi^2 \) and \(\phi A\phi \)

In the rest of this paper, we suppose that \(M \) is a connected real hypersurface in a complex space form \(M_n(c) \), \(c \neq 0 \), \(n \geq 3 \), with \(\eta \)-parallel shape operator \(A \).

We shall begin the proof of Theorem 6 in this section. As a first step, we shall give a slight improvement of Theorem 5.

Note that the commutativity of \(\phi A\phi \) and \(\phi^2 A\phi^2 \), as stated in Theorem 5, is equivalent to the simultaneous diagonalizability of \(\phi A\phi \) and \(\phi^2 A\phi^2 \) by orthonormal eigenvectors \(\xi, E_1, E_2, \ldots, E_{2n-2} \) on \(T_x M \) at each point \(x \in M \). We shall show that the commutativity of \(\phi A\phi \) and \(\phi^2 A\phi^2 \) is replaceable by a weaker condition “\(\phi A\phi \) and \(\phi^2 A\phi^2 \) share an eigenvector \(E \in D_x \) at each point \(x \in M \)”, i.e., we have

Theorem 7 Let \(M \) be a real hypersurface in \(M_n(c) \), \(n \geq 3 \), with \(\eta \)-parallel shape operator \(A \). If for each \(x \in M \), there is a unit vector \(E \in D_x \) such that \(E \) is an eigenvector of both \(\phi A\phi \) and \(\phi^2 A\phi^2 \) then \(M \) is locally congruent to a ruled real hypersurface, or a real hypersurface of type \(A \) or \(B \).

Proof We write \(E = E_1 \). Since \(\phi^2 A\phi^2 \) is self-adjoint and, both \(\xi \) and \(E_1 \) are orthonormal eigenvectors, we can extend to an orthonormal base formed by eigenvectors \(E_0 = \xi, E_1, E_2, \ldots, E_{2n-2} \) of \(\phi^2 A\phi^2 \) corresponding to the eigenvalues \(\lambda_0 = 0, \lambda_1, \ldots, \lambda_{2n-2} \) (with not necessarily distinct \(\lambda_k \)'s). Then we have \(\phi^2 A\phi^2 E_k = \lambda_k E_k \). From this, together with (1), we obtain
\[AE_k = \beta_k \xi + \lambda_k E_k; \quad k \in \{1, \ldots, 2n-2\} \]
where \(\beta_k = \eta(AE_k) \).
Now suppose to the contrary that \(\phi A \phi \) and \(\phi^2 A \phi^2 \) cannot be diagonalized simultaneously. Then there is some \(k \) for which \(E_k \) is not an eigenvector of \(\phi A \phi \) and hence \(\phi E_k \) is not an eigenvector of \(\phi^2 A \phi^2 \). Consequently, there is a positive integer \(p < n - 1 \) such that \(\dot{E}_{p+j} = \phi E_j \), \(j \in \{1, \ldots, p\} \) and \(\phi E_t \) is not an eigenvector of \(\phi^2 A \phi^2 \), for \(t \in \{2p+1, \ldots, 2n-2\} \). Hence, we may write

\[
AE_j = \beta_j \xi + \lambda_j E_j, \quad \phi E_j = \tilde{\beta}_j \xi + \tilde{\lambda}_j E_j; \quad j \in \{1, \ldots, p\}
\]

\[
AE_t = \beta_t \xi + \lambda_t E_t; \quad t \in \{2p+1, \ldots, 2n-2\}.
\]

\[
A \phi E_t - \eta(A \phi E_t) \xi - (A \phi E_t, \phi E_t) \phi E_t \neq 0; \quad t \in \{2p+1, \ldots, 2n-2\}. \tag{3}
\]

In the following, we consider \(j \in \{1, \ldots, p\} \). By substituting \(Z = \phi E_j \), \(W = E_j \), and \(X, Y \perp E_j, \phi E_j \) in Lemma 2, we obtain

\[
2c(\phi X, Y)(\tilde{\lambda}_j - \lambda_j) = \langle F \phi E_j, E_j \rangle ((A + A \phi) X, Y). \tag{4}
\]

First of all, suppose that \(\langle F \phi E_j, E_j \rangle \neq 0 \). Since \(\text{span}\{E_j, \phi E_j\}^\perp \) is invariant by \(\phi A \phi \), it follows from (4) that

\[
A \phi X = \eta(A \phi X) \xi + \frac{2c(\tilde{\lambda}_j - \lambda_j)}{\langle F \phi E_j, E_j \rangle} \phi X - \phi AX; \quad X \perp E_j, \phi E_j.
\]

But this contradicts (3). Hence

\[
\langle F \phi E_j, E_j \rangle = 0. \tag{5}
\]

From (4), we see that \(\tilde{\lambda}_j - \lambda_j = 0 \). On the other hand, by putting \(X = \phi E_j \), \(Y = E_j \), and \(Z, W \perp E_j, \phi E_j \) in Lemma 2, we obtain

\[
2c(\phi Z - \phi AZ, W) = (\tilde{\lambda}_j + \lambda_j) \langle F Z, W \rangle. \tag{6}
\]

If \(\tilde{\lambda}_j = \lambda_j = 0 \) then by making use of the fact that \(\text{span}\{E_j, \phi E_j\}^\perp \) is invariant by \(\phi A \phi \) and (6), we have \(A \phi X = \eta(A \phi X) \xi + \phi AX \), for \(X \perp E_j, \phi E_j \). From this, together with (3), we obtain a contradiction. Hence, we assume that

\[
\tilde{\lambda}_j = \lambda_j \neq 0. \tag{7}
\]

In what follows, we consider \(t \in \{2p+1, \ldots, 2n-2\} \). By putting \(Z = W = E_t \) in (6), we obtain \(\langle FE_t, E_t \rangle = 0 \). On the other hand, if we substitute \(Y = Z = W = E_t \) in Lemma 2, then

\[
\lambda_t \phi (A^2 E_t - (A^2 E_t, E_t) E_t) = 0.
\]

Now, by substituting \(Z = W = E_t \) in Lemma 2 and by using the above equation, we can see that

\[
\langle A \phi E_t, Y \rangle (c \phi E_t + F E_t, X) = \langle A \phi E_t, X \rangle (c \phi E_t + F E_t, Y); \quad X, Y \in D_t.
\]

From (3), we see that \(A \phi E_t \neq 0 \) and so the above equation implies that

\[
\phi (c \phi E_t + F E_t - f_i A \phi E_t) = 0, \tag{8}
\]

for some constant \(f_i \). Finally, by using (7), (8) and letting \(Z = E_t \) in (6), we have \(\langle (c - \lambda_j f_i) A \phi E_t - c(\lambda_t - \lambda_j) \phi E_t, W \rangle = 0 \), for \(W \perp E_j, \phi E_j \). Since \(A \phi E_t, \phi E_t \in \text{span}\{E_j, \phi E_j\}^\perp \), we conclude that

\[
\phi \left((c - \lambda_j f_i) A \phi E_t - c(\lambda_t - \lambda_j) \phi E_t \right) = 0.
\]
It follows from (3) that we get \(c - \lambda_j f_t = \lambda_t - \lambda_j = 0 \). From the above observation, we obtain
\[
AX = \eta(AX)\xi + \lambda_1 X, \quad X \in D_x.
\]
But this contradicts (3) and by Theorem 5, the proof is completed.

4 A characterization for ruled real hypersurfaces

Hopf hypersurfaces with \(\eta \)-parallel shape operator in \(M_n(c) \) have been completely classified in Theorem 3. We only have to focus on those real hypersurfaces on which \(\xi \) is not principal.

Suppose that the open set \(M_0 := \{ x \in M : \beta := ||\phi A\xi|| \neq 0 \} \) is nonempty. Then for each \(x \in M_0, \xi \) is not principal and so there exists a unit vector \(U \in D_x \) such that
\[
A\xi = \alpha\xi + \beta U, \quad (\alpha := \eta(A\xi)).
\]

In this section, we shall prove a characterization for ruled real hypersurfaces in \(M_n(c) \) under the \(\eta \)-parallelism of the shape operator and the assumption that \(U \) is an eigenvector for \(\phi^2 A\phi^2 \).

Lemma 3 Let \(M \) be a real hypersurface in a complex space form \(M_n(c), n \geq 3 \), with \(\eta \)-parallel shape operator, and let \(x \in M_0 \). Suppose \(M \) satisfies the following hypotheses:

1. \(AU = \beta\xi + \lambda U, \) for some \(\lambda \in \mathbb{R}, \) and
2. \(A\phi U = \tilde{\lambda}\phi U + \tilde{\delta}\phi H, \) for some unit vector \(H \in D_x \) with \(H \perp U \) and \(\tilde{\lambda}, \tilde{\delta} \in \mathbb{R} \) with \(\tilde{\delta} \neq 0. \)

Then

(a) \(FU \in \text{span}\{\phi U, \phi H, \xi\}, \)
(b) \(\tilde{\lambda}(FU, \phi H) = c\tilde{\delta} + \tilde{\delta}(FU, \phi U), \)
(c) \((F\phi H, \phi H) = 0, \)
(d) \(AH = \tau H, \) for some \(\tau \in \mathbb{R}, \)
(e) \(c\tilde{\delta} = \tau(FU, \phi H) \) \((\neq 0), \)
(f) \((F\phi U, \phi U) = 0, \)
(g) \(c\tilde{\delta} = \lambda(F\phi U, H) \) \((\neq 0), \)
(h) \((F\phi U, \phi H) = 0, \)
(i) \(A\phi H = \tilde{\delta}\phi U + \tilde{\tau}\phi H, \) for some \(\tilde{\tau} \in \mathbb{R}, \)
(j) \(c + \lambda\tilde{\tau} - \tilde{\delta}^2 = 0, \)
(k) \(FH \in \text{span}\{\phi U, \phi H, \xi\}, \)
(l) \(\tilde{\tau}(F\phi U, H) = c\tilde{\delta} + \tilde{\delta}(FH, \phi H). \)

Proof First, by letting \(X = \phi H, Y = Z = W = U \) in Lemma 2 and with the understanding of \(\tilde{\delta} \neq 0, \) we get \(\langle FU, U \rangle = 0. \) Hence after putting \(Z = W = U \) in Lemma 2 and taking account of \(\langle FU, U \rangle = 0, \) yields
\[
\langle A\phi U, Y \rangle \langle FU + c\phi U, X \rangle = \langle A\phi U, X \rangle \langle FU + c\phi U, Y \rangle
\]
for any \(X, Y \in D_x. \) Since \(\tilde{\delta} \neq 0, \) Assertion (a) can be deduced from this equation when we consider \(Y = \phi H. \) Moreover, by putting \(X = \phi H \) and \(Y = \phi U \) in the above equation, we obtain Assertion (b).
Next, by putting $Y = U$, $Z = W = H$ in Lemma 2 and taking account of Assertion (a), we get

$$4c \langle AH, \phi H \rangle \phi U = \langle FH, H \rangle \{\lambda + \tilde{\lambda}\phi U + \tilde{\delta} \phi H\}.$$

Since $\phi H \perp \phi U$ and $\tilde{\delta} \neq 0$, we have

$$\langle A\phi H, H \rangle = \langle FH, H \rangle = 0. \quad (9)$$

If we substitute $Y = U$ and $Z = W = \phi H$ in Lemma 2 then

$$-2c\tilde{\delta} H = \langle F\phi H, \phi H \rangle \{\lambda + \tilde{\lambda}\phi U + \tilde{\delta} \phi H\} - 2\langle F\phi H, U \rangle AH.$$

By using (9) and the above equation, we obtain assertions (c), (d) and (e).

By putting $Y = H$ and $Z = W = \phi U$ in Lemma 2, we get

$$-2c\tilde{\delta} \langle U, X \rangle = \langle F\phi U, \phi U \rangle \{\tau \phi H + A\phi H, X\} - 2\lambda\langle F\phi U, H \rangle \langle U, X \rangle$$

for any $X \in \mathcal{D}_x$. If we first put $X = \phi U$, follow by $X = U$ in this equation then we obtain assertions (f) and (g).

Now, let $Y = \phi H$ and $Z = W = \phi U$ in Lemma 2 and taking account of Assertion (i), we have

$$c\tilde{\delta} \phi U + \langle A^2 \phi U, \phi H \rangle A\phi U - \tilde{\delta} A^2 \phi U = \lambda \langle F\phi U, \phi H \rangle U.$$

Since all ϕU, $A\phi U$ and $A^2 \phi U \perp U$, we have Assertion (h) and

$$c\tilde{\delta} \phi U + \langle A^2 \phi U, \phi H \rangle A\phi U - \tilde{\delta} A^2 \phi U = 0. \quad (10)$$

By taking inner product of (10) with $X \perp \phi U, \phi H$, we have

$$0 = \langle A^2 \phi U, X \rangle = \tilde{\delta} \langle A\phi U, X \rangle = \langle A\phi U, X \rangle.$$

Hence, we obtain Assertion (i). Furthermore, with the help of Assertion (i), by considering the coefficient of ϕU in (10), we obtain Assertion (j).

Finally, with the help of (9) and Assertion (d), after putting $Z = W = H$ in Lemma 2, we get

$$\langle A\phi H, Y \rangle \langle FH + c\phi H, X \rangle = \langle A\phi H, X \rangle \langle FH + c\phi H, Y \rangle$$

for any $X, Y \in \mathcal{D}_x$. In a similar manner as in the proof of assertions (a) and (b), we obtain assertions (k) and (l). \qed

Lemma 4 Let M be a real hypersurface in a complex space form $M_n(c), n \geq 3$ with η-parallel shape operator, and let $x \in M_0$. Suppose $AU = \beta \xi + \lambda U$, for some $\lambda \in \mathbb{R}$. Then $A\phi U = \tilde{\lambda} \phi U$, for some $\tilde{\lambda} \in \mathbb{R}$.

Proof Suppose there exists a unit vector $H(\perp U)$ in \mathcal{D}_x and $\tilde{\lambda}, \tilde{\delta} \in \mathbb{R}$ with $\tilde{\delta} \neq 0$ such that $A\phi U = \tilde{\lambda} \phi U + \tilde{\delta} \phi H$.

By making the following substitutions for the vectors X, Y, Z and W in Lemma 2:

- (a) $X = U, Y = Z = \phi U, W = H$;
- (b) $X = H, Y = Z = \phi H, W = U$;
- (c) $X = H, Y = \phi H, Z = U, W = \phi U$;
- (d) $X = U, Y = \phi U, Z = H, W = \phi H$;
- (e) $X = W = H, Y = Z = U$,
with the help of Lemma 3, we obtain the following equations:

\[\tilde{\lambda}(F\phi U, H) = c\tilde{\delta} - \delta(FU, \phi U) \]
\[\tilde{\tau}(FU, \phi H) = c\delta - \delta(FH, \phi H) \]
\[-2c(\lambda - \tilde{\lambda}) = (\tau + \tilde{\tau})(FU, \phi U) + \delta(FHU, H) \]
\[-2c(\tau - \tilde{\tau}) = (\lambda + \tilde{\lambda})(FH, \phi H) + \delta(FU, \phi H) \]
\[c(\lambda - \tau) + \lambda^2 \tau - \lambda \tau^2 + \beta^2 \tau = 0. \]

It follows from (11), (12) and Lemma 3(b), (l) that

\[\tilde{\lambda}\{(F\phi U, H) + (FU, \phi H)} = 2c\tilde{\delta} = \tilde{\tau}\{(F\phi U, H) + (FU, \phi H)} \]

which implies that

\[\tilde{\tau} = \tilde{\lambda}. \]

Furthermore, by considering Lemma 3(e), (g) and (16), we see that

\[2\lambda \tau = \tilde{\lambda}(\lambda + \tau). \]

On the other hand, from Lemma 3(e), (11) and (17), we obtain

\[\langle F\phi U, U \rangle + \langle F\phi H, H \rangle = 0. \]

Next, with the help of (17), Lemma 3(b), (e), (g), (l) imply these two equations:

\[\tau \langle FU, \phi U \rangle = c(\tilde{\lambda} - \tau) \]
\[\tilde{\lambda}(FH, \phi H) = c(\tilde{\lambda} - \lambda). \]

Finally, by summing up (13) and (14), and taking account of (16)–(21), we see that \(\tilde{\lambda}^2 - \tilde{\delta}^2 = \lambda \tau \), which, together with Lemma 3(j), implies that \(\lambda \tau = -c \). By applying this to (15), we have \(\beta^2 \tau = 0 \). This is a contradiction and the proof is completed.

Theorem 8 Let \(M \) be a real hypersurface in a complex space form \(M_n(c), n \geq 3 \) with \(\eta \)-parallel shape operator. Suppose \(\beta \) never vanishes on \(M \) and \(AU = \beta \xi + \lambda U \), for some function \(\lambda \) on \(M \). Then \(M \) is locally congruent to a ruled real hypersurface.

Proof We have shown in Lemma 4, under these assumptions that \(U \) is an eigenvector for both \(\phi^2A\phi^2 \) and \(\phi A\phi \) at the points where \(\beta \neq 0 \). According to Theorem 7, \(M \) is locally congruent to a ruled real hypersurface, or a real hypersurface of type \(A \) or \(B \). As \(\beta \) never vanishes on \(M \), or equivalently, \(\xi \) is not principal in \(M \), \(M \) can never be of type \(A \) or \(B \). Hence, we conclude that \(M \) is locally congruent to a ruled real hypersurface.

5 Real hypersurfaces with no common eigenvectors in \(D \) for both \(\phi^2A\phi^2 \) and \(\phi A\phi \)

In Sect. 3, we showed that the existence of a common eigenvector in \(D_x \) for both \(\phi^2A\phi^2 \) and \(\phi A\phi \) is sufficient for the commutativity of \(\phi^2A\phi^2 \) and \(\phi A\phi \) at the point \(x \). In contrast, we shall now consider another possibility, i.e., \(\phi^2A\phi^2 \) and \(\phi A\phi \) do not share any eigenvector in \(D_x \), and show that this case indeed cannot occur on \(M_0 \).

Throughout this section, we suppose that \(x \in M_0 \) and that each vector in \(D_x \) fails to be an eigenvector for both \(\phi^2A\phi^2 \) and \(\phi A\phi \). Hence, for an arbitrary set \(\{\xi, E_1, \ldots, E_{2n-2}\} \) of
orthonormal eigenvectors for $\phi^2 A \phi^2$ at x, we may write, for $j \in \{1, \cdots, 2n - 2\}$,

$$AE_j = \beta_j \xi + \lambda_j E_j$$
$$A\phi E_j = \tilde{\beta}_j \xi + \tilde{\lambda}_j \phi E_j + \tilde{\delta}_j \phi H_j$$

where $H_j \in \mathcal{D}_x$ is a unit vector with $H_j \perp E_j$ and $\beta_j, \lambda_j, \tilde{\beta}_j, \tilde{\lambda}_j, \tilde{\delta}_j \in \mathbb{R}$ with $\tilde{\delta}_j \neq 0$.

Our main purpose here is to show under the above setting that $AU = \beta \xi + \lambda U$ at such a point x in M_0. We begin with deriving two equations that are applicable later.

By letting $Y = Z = W = E_j$ in Lemma 2, we obtain

$$2\lambda_j (A^2 E_j, X) - 2\lambda_j (A^2 E_j, E_j) (E_j, X) = \langle FE_j, E_j \rangle (\lambda_j \phi E_j + 3A\phi E_j, X) \tag{22}$$

for any $X \in \mathcal{D}_x$. In addition, (22) can be simplified as

$$2\lambda_j \beta_j (\beta U - \beta_j E_j) = \langle FE_j, E_j \rangle (\lambda_j + 3\tilde{\lambda}_j) \phi E_j + 3\tilde{\delta}_j \phi H_j \tag{23}.$$

Lemma 5 \(\langle FE_j, E_j \rangle = 0 \), for $j \in \{1, \ldots, 2n - 2\}$.

Proof Suppose there is an E_j, say E_1, such that $\langle FE_1, E_1 \rangle \neq 0$. Then by considering the coefficient of ϕH_1 in (23) and taking account of $\tilde{\delta}_1 \neq 0$, we obtain

$$\lambda_1 \beta_1 \neq 0, \tag{24}$$

and so

$$\beta U = \frac{1}{2\lambda_1} E_1 + \frac{\langle FE_1, E_1 \rangle}{2\lambda_1 \beta_1} (\lambda_1 + 3\tilde{\lambda}_1) \phi E_1 + 3\tilde{\delta}_1 \phi H_1 \tag{25}.$$

Further, it follows from (22) and (24) that

$$A^2 E_1 \in \text{span}\{E_1, \phi E_1, \phi H_1, \xi\}. \tag{26}$$

Next, if we put $Y = H_1$ and $Z = W = E_1$ in Lemma 2 then

$$0 = \langle FE_1, E_1 \rangle \langle \phi AH_1 + A\phi H_1, X \rangle + 2 \langle FE_1, H_1 \rangle \langle A\phi E_1, X \rangle \tag{27}$$

for any $X \in \mathcal{D}_x$. Since $\tilde{\delta}_1 \langle FE_1, E_1 \rangle \neq 0$, after putting $X = \phi E_1$ in (27), we get

$$\tilde{\lambda}_1 \langle FE_1, H_1 \rangle \neq 0. \tag{28}$$

By substituting $Y = E_1$ and $Z = W = H_1$ in Lemma 2, we have

$$4c \langle AH_1, \phi H_1 \rangle \langle \phi E_1, X \rangle = \langle FH_1, H_1 \rangle (\lambda_1 \phi E_1 + A\phi E_1, X) + 2 \langle FE_1, H_1 \rangle \langle A\phi H_1, X \rangle \tag{29}$$

for any $X \in \mathcal{D}_x$. Since $\langle FE_1, H_1 \rangle \neq 0$, by putting $X = H_1$ in (29) and taking account of $H_1 \perp A\phi E_1, E_1$,

$$\langle A\phi H_1, H_1 \rangle = 0. \tag{30}$$

Furthermore, the following can also be deduced

$$\langle FH_1, H_1 \rangle (\lambda_1 + \tilde{\lambda}_1) = -2\tilde{\delta}_1 \langle FH_1, E_1 \rangle \neq 0, \tag{31}$$

$$A\phi H_1 = \tilde{h}_1 \xi + \tilde{\delta}_1 \phi E_1 + \tilde{\tau}_1 \phi H_1, \quad (\tilde{h}, \tilde{\tau} \in \mathbb{R}). \tag{32}$$

By virtue of (27) and (32), we can see that $AH_1 \in \text{span}\{E_1, H_1, \xi\}$. However, since $AH_1 \perp E_1$, we conclude that

$$AH_1 = h_1 \xi + \tau_1 H_1, \quad (h_1, \tau_1 \in \mathbb{R}). \tag{33}$$
Finally, by substituting $Y = Z = W = H_1$ in Lemma 2, with the help of (33), we get

$$2\tau_1 h_1 (\beta U - h_1 H_1) = \langle FH_1, H_1 \rangle \{(\tau_1 + 3\bar{\tau}_1)\phi H_1 + 3\bar{\delta}\phi E_1\}.$$

Since $\delta(FH_1, H_1) \neq 0$, we deduce that $\tau_1 h_1 \neq 0$ and hence

$$\beta U = \frac{1}{2\tau_1} H_1 + \frac{\langle FH_1, H_1 \rangle}{2\tau_1 h_1} \{(\tau_1 + 3\bar{\tau}_1)\phi H_1 + 3\bar{\delta}\phi E_1\}. \tag{34}$$

By comparing (25) and (34), as $H_1, E_1, \phi H_1, \phi E_1$ are orthogonal, $\lambda_1^{-1} = \tau_1^{-1} = 0$, which is a contradiction and this completes the proof.

Lemma 6 $\lambda_j \neq 0$, for $j \in \{1, \ldots, 2n - 2\}$.

Proof Suppose to the contrary that $\lambda_j = 0$ for some j, say $\lambda_1 = 0$. Let $Y = E_1, Z = W = \phi E_1$ in Lemma 2. Then

$$2c\delta_1 (H_1, X) - 2\beta_1 \bar{\beta}_1 \langle A\phi E_1, X \rangle = \langle F\phi E_1, \phi E_1 \rangle \langle A\phi E_1, X \rangle$$

for any $X \in D_1$. Since $H_1 \perp A\phi E_1$, this equation gives $\delta_1 = 0$. This contradicts the hypothesis and the proof is completed.

Lemma 7 Let M be a real hypersurface in a complex space form $M_n(c), n \geq 3$, with η-parallel shape operator A. Then $\phi^2 A\phi^2$ and $A\phi$ share at least one eigenvector in D_x, for each $x \in M_0$.

Proof Let $x \in M_0$ such that $\phi^2 A\phi^2$ and $A\phi$ do not share any eigenvector in D_x. It follows from (23), Lemma 5 and Lemma 6 that

$$\beta_j (\beta U - \beta_j E_j) = 0, \quad j \in \{1, \ldots, 2n - 2\}.$$

Since ξ is not principal, there is at least one (in fact, only one) j, say $j = 1$, such that $\beta_1 \neq 0$. Consequently, we obtain $U = \pm E_1$ is an eigenvector for $\phi^2 A\phi^2$. Furthermore, by Lemma 4, U is an eigenvector for $A\phi$ too. This is a contradiction and the proof is completed.

6 Proof of Theorem 6

We are now in a position to classify real hypersurfaces in $M_n(c)$ with η-parallel shape operator.

Since real hypersurfaces of type A or B and ruled real hypersurfaces have η-parallel shape operator, we only need to prove the sufficiency. By virtue of Theorem 3, we conclude that each component of the interior of $M \setminus M_0$, int$(M \setminus M_0)$, is of type A or B. By verifying the constant principal curvatures for real hypersurfaces of type A and B (cf. the lists in [2, 17]), we can see that $|\phi A\phi|$ is locally a positive constant on int$(M \setminus M_0)$.

On the other hand, at each point $x \in M_0$, we have shown in Lemma 7 that there is at least one eigenvector in D_x shared by both $\phi^2 A\phi^2$ and $A\phi$. Since ξ is not principal at each point of M_0, the open submanifold M_0 can never be of type A or B. According to Theorem 7, the open submanifold M_0 is locally congruent to a ruled real hypersurface and hence $|\phi A\phi| = 0$ on M_0. By a standard topological argument, either M_0 is empty or $M_0 = M$. This completes the proof.

Acknowledgements The authors are grateful to the referee for several valuable suggestions to improve the presentation of the paper.
References