A copper alloy consists of 2.6% Fe, 0.15% P and 0.2% Zn with modified grain size of 500 and 750 nm were studied on their rate of diffusion at different oxidation temperature using electron microscopic imaging technique. Different oxidation temperature contributed to the variation of copper oxide particle size, surface porosity level, particle agglomeration and particle nucleation. High oxidation temperature resulted in large oxide particles formation as well as high surface porosity. The magnitude of the copper oxide growth depended on the oxidation temperature. The increase in the oxidation rate at high oxidation temperature was likely a result of faster transport of the reactants through the bulk copper due to a significant contribution from grain-boundary diffusion.

Abstract


Paper Title: Electron Microscopic Investigation on Nanostructure Behaviors of Thermal Oxidation Copper

Abstract

A copper alloy consists of 2.6% Fe, 0.15% P and 0.2% Zn with modified grain size of 500 and 750 nm were studied on their rate of diffusion at different oxidation temperature using electron microscopic imaging technique. Different oxidation temperature contributed to the variation of copper oxide particle size, surface porosity level, particle agglomeration and particle nucleation. High oxidation temperature resulted in large oxide particles formation as well as high surface porosity. The magnitude of the copper oxide growth depended on the oxidation temperature. The increase in the oxidation rate at high oxidation temperature was likely a result of faster transport of the reactants through the bulk copper due to a significant contribution from grain-boundary diffusion.
Ba- and La- Strontium Cobalt Ferrite Carbonate Composite as Cathode Materials for Low Temperature SOFC p.125 (/KEM.694.125)

Effect of Dipping Numbers on the Crystalline Phase and Microstructure of Ag-TiO₂ Coating p.133 (/KEM.694.133)

Influence of HCl Content and Ageing Time on TiO₂ Coating Formation in Acidic Sol-Gel Solutions p.138 (/KEM.694.138)

Edited by Mohd Ederozey Abd Manaf, T. Joseph Sahaya Anand, Md Nizam Abd Rahman, Mohd Sanusi Abdul Aziz and Radzali Othman

Pages 116-119

DOI 10.4028/www.scientific.net/KEM.694.116


Online since May 2016

Authors Siti Rahmah Esa (/author/Siti_Rahmah_Esa), Ghazali Omar (/author/Ghazali_Omar), Rosiyah Yahya (/author/Rosiyah_Yahya_1), Noreffendy Tamaldin (/author/Noreffendy_Tamaldin), Aziz Hassan (/author/Aziz_Hassan), Bazura Abdul Rahim (/author/Bazura_Abdul_Rahim), Wan Azli Wan Ismail (/author/Wan_Azli_Wan_Ismail)

Keywords Copper Oxide (/keyword/Copper_Oxide), Diffusion (/keyword/Diffusion), Nanostructures (/keyword/Nanostructures)

Export RIS (/KEM.694.116.ris), BibTeX (/KEM.694.116.bib)