An efficient semisupervised feedforward neural network clustering

Roya Asadi, Mitra Asadi and Sameem Abdul Kareem

Artificial Intelligence for Engineering Design, Analysis and Manufacturing / FirstView Article / December 2014, pp 1 - 15
DOI: 10.1017/S0890060414000675, Published online: 02 December 2014

Link to this article: http://journals.cambridge.org/abstract_S0890060414000675

How to cite this article:

Request Permissions : Click here
An efficient semisupervised feedforward neural network clustering

ROYA ASADI,1 MITRA ASADI,2 AND SAMEEM ABDUL KAREEM1

1Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
2Department of Research, Iranian Blood Transfusion Organization, Tehran, Iran

(RECEIVED December 31, 2013; ACCEPTED September 4, 2014)

Abstract

We developed an efficient semisupervised feedforward neural network clustering model with one epoch training and data dimensionality reduction ability to solve the problems of low training speed, accuracy, and high memory complexity of clustering. During training, a codebook of nonrandom weights is learned through input data directly. A standard weight vector is extracted from the codebook, and the exclusive threshold of each input instance is calculated based on the standard weight vector. The input instances are clustered based on their exclusive thresholds. The model assigns a class label to each input instance through the training set. The class label of each unlabeled input instance is predicted by considering a linear activation function and the exclusive threshold. Finally, the number of clusters and the density of each cluster are updated. The accuracy of the proposed model was measured through the number of clusters and the quantity of correctly classified nodes, which was 99.85%, 100%, and 99.91% of the Breast Cancer, Iris, and Spam data sets from the University of California at Irvine Machine Learning Repository, respectively, and the superior F measure results between 98.29% and 100% accuracies for the breast cancer data set from the University of Malaya Medical Center to predict the survival time.

Keywords: Artificial Neural Network; Feedforward Neural Network; Nonrandom Weight; Semiclustering; Supervised and Unsupervised Learning

1. INTRODUCTION

Artificial neural networks are computational models inspired by neurobiology for enhancing and testing computational analogues of neurons. Neural networks are adaptable algorithms that permit users to encode nonlinear relationships between the input and the desirable outputs (Dasarathy, 1990; Kemp et al., 1997; Goebel & Gruenwald, 1999; Hegland, 2003; Kantardzic, 2011). In a feedforward neural network, data processing occurs in only one forward interconnection from the input layer to the output layer without any cycles and backward loops (Bose & Liang, 1996; McCloskey, 2000; Andonie & Kovalerchuk, 2007). Learning is an imperative feature of the neural network in machine learning. There are numerous types of learning rules, categorized broadly under supervised learning, unsupervised learning, and reinforcement learning (Bengio et al., 2000; Han & Kamber, 2006; Andonie & Kovalerchuk, 2007; Kantardzic, 2011).

Supervised learning is similar to unsupervised training in the sense that the training set is provided. However, in supervised training the desired output is provided and the weight matrix is applied based on the difference between the predicted output and the actual output of the neural network. One of the popular supervised feedforward neural network (FFNN) models is the backpropagation network (BPN; Werbos, 1974). The BPN uses gradient-based optimization methods in two basic steps: to calculate the gradient of the error function and to employ the gradient. The optimization procedure includes a high number of small steps, causing the learning to be considerably slow. Optimization problems in supervised learning can be shown as the sum of squared errors between the output activations and the target activations in the neural network as well as the minimum weights (Bose & Liang, 1996; Craven & Shavlik, 1997; Andonie & Kovalerchuk, 2007).

Approaches to unsupervised learning in machine learning are statistical modeling, compression, filtering, blind source separation, and clustering. Unsupervised learning or self-or-
ganized learning finds symmetries in the data represented by input instances with unlabeled data. However, to assess the performance of unsupervised learning, there is no error or reward signal. In this study, the clustering aspect of unsupervised neural network classification is considered (Hegland, 2003; Han & Kamber, 2006; Kantardzic, 2011). A self-organizing map (SOM; Kohonen, 1997) is an unsupervised FFNN (UFFNN) model that contains no hidden layer. The SOM differs from the feedforward BPN model in several important ways; it selects a winning neighborhood instead of a single winner, whereby the unit that is selected has a connection weight vector closest to the current input vector. Each input layer neuron has a feedforward connection to each output layer neuron.

UFFNN clustering learning is dependent upon differentiating the weights of input vectors, utilizing processing vector quantization (VQ) patterns and inherent distributed parallel processing. However, being effective in training speed, accuracy, and memory usage of clustering is a basic subject that should be seriously considered in the development of the UFFNN models (Peng & Lin, 1999; Bengio, 2000; Andonie & Kovalerchuk, 2007; Rougier & Boniface, 2011). UFFNN methods currently often use Hebbian learning (Hebb, 1949), competitive learning, or competitive Hebbian learning. Hebb proposed the first learning rule in the UFFNN clustering method and described a synaptic flexibility mechanism in which, if neuron \(i \) is close enough to stimulate neuron \(j \) at the same time and takes part in its activation repeatedly, the synaptic connection between these two neurons is strengthened and neuron \(j \) will be more sensitive to the action of neuron \(i \). The similarities of Hebbian learning and competitive learning include unsupervised learning without an error signal, strongly related to biological systems. However, in competitive learning, just one output must be active; merely weights of the winner, which is very similar to the input vector, are updated at each epoch, and for updating weights, it is only necessary to consider learning rate and input data from the input layer. Conversely, in Hebbian learning, no constraint is enforced by neighboring nodes, all weights are updated at each epoch, and for updating weights, it is necessary to consider learning rate input data from the input layer and output data. In the case of competitive Hebbian learning, the neural network method shares some properties of both competitive learning and Hebbian learning (Fritzke, 1997; McClelland et al., 1999). Competitive learning can apply VQ (Linde et al., 1980) during clustering. Linde et al. (1980) introduced an algorithm for VQ design to gain a suitable codebook of weights for clustering the input data nodes. The VQ is based on probability density functions by distribution of vectors of the weights. Current UFFNN clustering methods inherit the features of the VQ and \(K \)-means (Goebel & Gruenwald, 1999). \(K \)-means is a partitioning clustering method, using a centroid-based technique similar to the VQ. Neural gas (NG; Martinetz et al., 1993) is based on the VQ and data compression. The NG dynamically partitions itself like a gas and describes the number of clusters. The vectors of weights are initialized randomly. The NG algorithm is faster and results in more accurate clusters, but the algorithm cannot control the network of nodes by either deleting or adding a node dynamically during clustering (Fritzke, 1995). The growing NG (GNG) method is an example that uses the competitive Hebbian learning where in each cycle of training the connection between win node and the second nearest node is created or updated. The GNG method is able to follow dynamic distributions by adding nodes and deleting them in the network during clustering by using the utility parameters. Two random nodes from the input data are selected and the network competition is started for the highest similarity to the input pattern. During the learning, related data nodes are classified as similarities within clusters and unrelated data nodes as dissimilarities clusters. However, the disadvantages of the GNG are that the number of nodes is increased in order to get input probability density and the maximum number of nodes and thresholds must be predetermined (Hamker, 2001; Furao et al., 2007; Hebboul et al., 2011). SOM (Kohonen, 1997) maps multidimensional data onto lower dimensional subspaces where the geometric relationships between points indicates their similarity. SOM generates subspaces with an unsupervised learning neural network training with a competitive learning algorithm. The weights are adjusted based on their proximity to the “winning” nodes, that is, the nodes that most closely resemble a sample input (Ultsch & Siemon, 1990; Honkela, 1998; Germano, 1999; Kohonen, 2000).

The review and investigation of current UFFNN clustering methods shows some sources of the mentioned problems that must be considered and solved (Asadi et al., 2013):

- Using random weights, thresholds, and parameters for controlling clustering tasks, initialization of the weights randomly results in the paradox of low accuracy and high training time. The clustering process is considerably slow because weights have to be updated in each epoch during learning. Utilizing suitable weights and parameters is extremely necessary because the neural network relies on the foundation of garbage-in, garbage-out. Therefore, the problem affects memory usage too (Kasabov, 1998; Jolliffe, 2002; Andonie & Kovalerchuk, 2007; Demuth et al., 2008; Kantardzic, 2011). The values of the parameters are often selected by trial and error experimentally after several executions of the clustering model; and often the clustering method uses many parameters to manage the clustering performance (Han & Kamber, 2006; Asadi et al., 2014; Asadi & Kareem, 2014).

- High dimensional data and big data sets that cause difficulty in managing new data and noise while pruning cause data details to be lost (Kohonen et al., 2000; Hinton & Salakhutdinov, 2006; Van der Maaten et al., 2009).

- Relearning may occur over several epochs. During learning, weights have to be updated in each epoch.
Therefore, the clustering process has considerably high central processing unit (CPU) time usage (Pavel, 2002; Hebboul et al., 2011).

Several studies have been devoted to improving the UFFNN methods by using constraints such as class labels. The constraints of class labels are based on the knowledge of experts and the user guide as partial supervision for better controlling the tasks of clustering and the desired results. The UFFNN clustering methods have the capability to develop into semi-clustering method by obtaining the feedback of users (Prudent & Ennaji, 2005; Kamiya et al., 2007; Shen et al., 2011). The aim of this research is to develop an efficient semisupervised feedforward neural network clustering model to overcome the above mentioned problems and ultimately improve the results of the UFFNN clustering method.

2. Methodology

In this paper, we developed a real semisupervised FFNN (RSFFNN) clustering model to overcome the problems and some sources of these problems, as discussed in the Introduction, in order to improve the clustering speed and accuracy using only one epoch training time and an effective memory complexity. In order to develop the RSFFNN, we improved real UFFNN (RUFFNN) clustering structurally (Asadi & Kareem, 2014). The RUFFNN method computed a codebook of real weights by using values of input data directly without using any random values. Consequently, the threshold of each input data was computed based on the real weights without using any class label or constraint. Finally, the input data are clustered based on related thresholds.

The next section explains the stages of the RSFFNN clustering method and how it solves the clustering problems. Figure 1 shows the design of the RSFFNN model for clustering.

2.1. Overview of the RSFFNN clustering method

The design of the RSFFNN method involves several stages:

- **Data preprocessing:** Commonly preprocessing is the contributing feature in developing efficient techniques for low training time and high accuracy of FFNN clustering (Oh & Park, 2011; Larochelle et al., 2012; Asadi & Kareem, 2014). In the RSFFNN model, the MinMax normalization technique was used to transform an input value of each attribute to fit in a specific range, such as [0,1] (Han & Kamber, 2006; Asadi & Kareem, 2013). The input matrix of values consists of every single value with individual measurement unit type and range. The fundamental enterprise of the proposed method is that no missing values exist and every value is acceptable. For this purpose, other data preprocessing techniques such as data cleaning are valuable (Asadi & Kareem, 2013). Equation (1) shows the special formula to normalize the input values (Han & Kamber, 2006; Asadi & Kareem, 2013):

 \[
 \text{Normalized}(X_{ij}) = (X_{ij} - \text{Min}(X_{ij})/\text{Max}(X_{ij}) - \text{Min}(X_{ij})) \\
 \times (\text{newMax} - \text{newMin}) + \text{newMin,} \quad (1)
 \]

 where \(X_{ij}\) is the \(j\)th attribute value of input instance \(i\). In the range of attribute \(j\) for all input instances, \(\text{Min}(X_{ij})\) is the minimum value and \(\text{Max}(X_{ij})\) is the maximum value; \(\text{newMax} = 1\) and \(\text{newMin} = 0\).

- **Creating a codebook of nonrandom weights:** In order to solve the problem of using random weights as mentioned in the Introduction, the RSFFNN method creates a codebook of nonrandom weights unlike the current UFFNN methods. In this stage, the proposed model computes the mean \(\mu_i\) of the normalized record \(X_i\). Then the standard deviation \(\sigma_i\) of the input instance of \(X_i\) is computed by considering \(\mu_i\). This is the definition of the standard normal distribution (SND; Ziegel, 2002) as shown in Figure 2. The SND shows how far each attribute value of the input instance \(X_i\) is from the mean, in the metric standard deviation unit. In this step, each normalized attribute value of the input instance \(X_i\) is considered as the weight \(W_j\) for that value. Each element or code word of the weight codebook is equal to \(W_j\). The model receives other input values of the instances and computes the codebook of all weights of input values. Therefore, each weight vector of the codebook is computed based on the SND of each input instance value of \(X_i\), as shown in Eq. (2). This phase can be processed in parallel.

 \[
 \text{SND}(X_{ij}) = (X_{ij} - \mu_{ij})/\sigma_{ij}. \quad (2)
 \]

 The SND\((X_{ij})\) is a standard normalized value of each attribute value of the input instance (record), and \(\mu_{ij}\) and \(\sigma_{ij}\) are the mean and standard deviation of the input instance record. Therefore, each SND\((X_{ij})\) shows the distance of each input value of each instance from the mean of the input instance. Accordingly, each \(W_j\) as a weight of \(X_{ij}\) is equal to SND\((X_{ij})\) as in Eq. (3), and the initialization of weights is not at random:

 \[
 W_{ij} = \text{SND}(X_{ij}) \quad i = 1, 2, \ldots, n; j = 1, 2, \ldots, m. \quad (3)
 \]

- **Achieving a standard weight (SW) vector:** In the SOM, the weight of the codebook that is nearest to the input vector is distinguished as the winner node and the best matching unit. The RSFFNN method tries to learn and extract a unique SW vector through real weights codebook, similar to the SOM method but through a different way. Each weight vector of the codebook is related to each input data vector and is computes by applying SND based on the mean of the input data vector. The SW vector is the geometric mean (Jacquier et al., 2003; Van der Maaten et al., 2009) vector of the code-
book of the nonrandom weights, and it is computed based on the gravity center of the matrix of the input data vectors. In the RSFFNN method, the codebook of real weights is initialized by considering properties of input values directly and without using any random values or random parameters. In order to extract a unique SW vector through the real weights codebook, several techniques exist, such as principal component analysis (PCA) by Jolliffe (1986), which is a powerful method in dimension reduction (Jolliffe, 1986; Lindsay et al., 2002; Daffertshofer et al., 2004; Van der Maaten et al., 2009). PCA is a classical multivariate data analysis method that is useful in linear feature extraction and data compression. The PCA technique has three effects (Lindsay et al., 2002; Özbay et al., 2006): it orthogonalizes the components of input vectors so they are uncorrelated with each other, it orders the resulting orthogonal components (principal components) so that those with larger variations come first, and it eliminates the components that contribute the least to the variation in the data set. Next, the input vectors are normalized, and the zero mean and unity variance are computed before the mean and standard deviation method is employed (Demuth et al., 2008). The basic assumption is that most information on classification of a high dimensional matrix has a large variety. However, the time complexity of the PCA

Fig. 1. The design of a real semisupervised feedforward neural network model for clustering.
is $O(p^2n) + O(p^3)$, and PCA losses the input values during training. Therefore, at this stage, the RSFFNN model computes the SW vector by training the real weights in the codebook. The SW vector is the extract of the codebook of real weights as a base and a criterion weight vector for clustering input instances of the data set globally. In other words, the SW is the essential feature of the RSFFNN model. The SW consists of the components SW_j for the attributes, which is computed by the nth root of the product of the weights of each attribute of the input data. The parameter n is the number of input instances, i is the current number of the node of input instance, m is the number of attributes, and j is the current number of the attribute of input instance. Equations (4) and (5) show these relationships:

$$SW_j = \left(\prod_{i=1}^{n} W_{ij} \right)^{1/n}, \quad (4)$$

$$\bar{SW} = (SW_1, SW_2, \ldots, SW_m). \quad (5)$$

Table 1 illustrates the codebook of the weights and the process of extracting the SW vector.

The learning of the RSFFNN model does not require computing any error function, such as the mean square errors, and updating weights in any training cycle; therefore, the approach results in a reduced training time. The main goal of the RUFFNN model is learning of the SW vector as the criterion weight vector. The next stages will show how the thresholds are computed, and the data set of input instances will be clustered easily based on just the SW.

- **Fine-tuning:** In order to adjust the weights precisely in order to achieve better results of clustering the data points, we considered two phases of smoothing the weights and pruning the weak weights in the proposed model as follows:

1. Smoothing the weights: There are different techniques in order to have smooth, flexible, and robust parameters of FFNN clustering tasks such as the weights interconnection to improve speed, accuracy, and capability of the training and optimization of the FFNN model (Jean & Wang, 1994; Peng & Lin, 1999; Gui et al., 2001; Tong et al., 2010). The **mid-range** technique is a popular smoothing technique (Jean & Wang, 1994; Gui et al., 2001). Some attributes of the input instances have weight amounts that are too high, which may cause them to overlook the high thresholds and high effect on the clustering tasks. When some components of the SW vector are significantly higher than other components, the midrange technique is used. In the midrange technique, the average of high weight components of the SW vector is computed and considered as the middle range (midrange). If the weights of some components of the SW vector are higher than the midrange, the model will fix their weights to equal the midrange value. Therefore, the SW_j varies as the components of the SW vector are smoothed based on the midrange smooth technique.

2. Data dimension reduction: High dimensional data and a large data set cause difficulty in managing new data and noise, while pruning causes data details to be lost (Kohonen, 2000; Deng & Kasabov, 2003; Hinton & Salakhutdinov, 2006; Van der Maaten et al., 2009). The RSFFNN model can reduce the dimension of data by recognizing the weak weights of SW_j and deleting the related attributes. The weak weights that are close to zero are less effective on thresholds and the desired output. The effects of the data dimensionality reduction technique are high speed and low memory usage complexity of the network (Jolliffe, 1986; Hinton & Salakhutdinov, 2006; Chattopadhyay et al., 2011; Asadi & Kareem, 2014). Hence, the weights can be controlled and pruned in advance.

- **Single layer SFFNN clustering:** The main section of the structure of the RSFFNN model is a single layer FFNN topology to cluster the data of the input instances by using normalized values and the components of the SW vector. The topology is very simple, as illustrated in Figure 1. The number of layers and unit of nodes

![Fig. 2. Standard normal distribution for each attribute value of input instance X_i.](image-url)
are clear, which contains of just an input layer with \(n \) nodes. This is the same as the number of attributes and an output layer with just one node. The units of the input layer are fed by the normalized data values from the data preprocessing stage of the RSFFNN model. Each unit has a related weight component \(SW_j \) of the SW vector. The output layer has one unit with a weighted sum function for computing the actual desired output. The training of the RSFFNN is carried out in just one iteration and is based on real weights, without any weight updating and error function such as the mean square error. The threshold or output is computed by using normalized values of input instances and the SW vector. Because the mean of the weights was used for computing the SW, the range and properties of the input values of instances cannot dominate the values of the thresholds. The exclusive threshold of \(T_i \) of the actual output unit is computed by the weighted sum function similar to Hebbian learning but during just one training epoch. Eq. (6) shows the real threshold \(T_i \) for each input instance vector of \(X_i \):

\[
T_i = \sum_{j=1}^{m} X_{ij} \times SW_j.
\]

The threshold of each data point shows the distance between each data point and the central gravity of the matrix of input values. Each input instance, or data point, has an exclusive and individual threshold. The art of the RSFFNN method is in finding the exclusive threshold for each input instance for better clustering results. The RSFFNN clustering model earns some capabilities by using exclusive thresholds:

1. Recognizing the noise and pruning them: RSFFNN recognizes isolated input data points through the solitary thresholds \(T_i \). The threshold of an isolated data point would not be further from the thresholds of other clustered data points. Therefore, the data point lies out of the locations of other clusters. The proposed model considers these data points as noise and deletes them. The action of deleting the noise causes high speed and clustering accuracy with low memory usage of the network.

2. Clustering of the input instances: The RSFFNN clustering method groups the data points with similar thresholds into one cluster. For each data point, the model searches all clusters to find a suitable cluster with the thresholds of input instances similar or near to the threshold of the data point. Consequently, the model groups the data points with similar thresholds. Each input instance has a distinct and special threshold. If the RSFFNN model recognizes a data point not at a similar threshold with any data point in other clusters, the model assumes the data point as noise. Figure 3a and b show the Iris data set from the University of California at Irvine (UCI) Machine Learning Repository, which is clustered to three clusters based on their distances to the gravity center of the data set or, in the other word, their thresholds. We can see the 10th input data point has \(T_{10} \) equal 0.009907566 and lies inside of the Cluster 3, or the cluster of the Iris Virginica. Therefore, the proposed method is able to learn the number of clusters and their densities without having any constraint and parameter for controlling the clustering tasks based on the thresholds; and it generates the clusters during just one epoch.

3. Utilizing the \(K \)-step activation function (Alippi et al., 1995): The \(K \)-step function, or threshold function, is a linear activation function for transformation of input values. This kind of function, as in Eq. (7), is limited with \(K \) values based on the number of classes of the data set, and each limited domain of thresholds refers to the special output value of the \(K \)-step function. The binary-step function is a branch of the \(K \)-step function.

![Fig. 3. The outlook of clustering the Iris data set by real semisupervised feedforward neural network before using class labels.](image-url)
for two data classes 0 and 1. It is often used in single layer networks. The function \(g(X) \) \(K \)-step activation function for the transformation output will be 0 or 1 based on the threshold \(T_i \) as shown in Figure 4.

\[
g(X) = \begin{cases}
1 & \text{if } (X \geq T_i) \\
0 & \text{if } (X < T_i)
\end{cases}
\] (7)

4. Semiclustering of the input instances: In this stage of the RSFFNN clustering method, the model assigns the class label to each input instance based on the training set. Therefore, by using the \(K \)-step activation function, the model considers the exclusive threshold of each input instance and related class label. Consequently, based on \(K \) class labels and exclusive thresholds in the training set, the proposed model expects \(K \) clusters, and for each cluster it considers a domain of thresholds. By considering the clusters of results of the last stage, if there is some input instance with a related threshold in each cluster but without a related class label, the model moves this input instance to a related cluster. Therefore, the model updates the number of clusters and the density of each cluster by using class labels through the feedback of users. This stage affects the result of clustering and improves the accuracy of clustering. In special cases, such as prediction of survival time using the breast cancer data set, the proposed model can consider additional techniques in order to have an accurate, fast training process of semiclustering with low memory complexity. The training process of the RSFFNN model runs for every subdata set based on the interval of survival time. The vector of SW is computed, and consequently the real thresholds are generated. Accordingly, clustering and semiclustering will be processed. The class label of each input instance is assigned based on its exclusive threshold. If the \(T_i \) of the instance is not matched with any thresholds domain in any clusters, then the input instance is considered as unobserved or unknown data. There are several ways to predict the class label for unobserved data. Some authors consider unsupervised and supervised neural network models such as a combination of the SOM and the BPN for the prediction of class labels of the unobserved data (Larochelle et al., 2009, 2012). Usually, bagging and boosting methods are used in several models to find the upper vote or the weight of the mentioned class label (Daffertshofer et al., 2004). In order to predict the class label for the unobserved data, we proposed a trial-and-error method. The class label of each unknown observation is signed and predicted based on the \(K \)-step function and the related cluster and thresholds domain of the cluster where the input instance is there. The semiclustering accuracy is measured by the \(F \) measure function with 10 folds of the test set, and the accuracy will show the validation of the prediction.

2.2. The algorithm of the RSFFNN clustering model

This section illustrates the algorithm of the RSFFNN model for clustering of high dimensional data as follows:

Algorithm: RSFFNN
Input: Data set \(X \);
Output: Clusters of data set;
Initialize the parameters:
Let \(X \): Data node set;
Let \(n \): Number of nodes;
Let \(m \): Number of attributes;
Let \(i \): Current number of the node;
Let \(j \): Current number of the attribute;
Let \(X_i \): Current input instance of data set;
Let \(W_{ij} \): Weight of attribute \(j \) of input instance \(X_i \);
Let SW: Standard Weight vector;
Let SW\(_j\): \(j \)-th Component of the SW vector;
Let \(T_i \): Threshold of input instance of \(X_i \);
Method:

1. // Preprocessing of data set
 \{ // Data preprocessing based on MinMax(\(X_{ij} \))
 \forall i = 1 \text{ to } n \\
 \forall j = 1 \text{ to } m \\
 \{ \\
 X_i = (X_i - \text{Min}(X_i)) / \text{Max}(X_i) - \text{Min}(X_i)); \\
 \}
 \}
 // Create the codebook of the weights
 // Compute the standard normal distribution SND of each input data attribute value
 X_i based on \(\mu_i \) and \(\sigma_i \), which are mean and standard deviation of the input data \(X_i \):
 \forall i = 1 \text{ to } n \\
 \forall j = 1 \text{ to } m \\
 \{ \\
 \text{SND}(X_{ij}) = (X_{ij} - \mu_i) / \sigma_i; \\
 \}
 // Consider \(W_{ij} \) as weight of \(X_{ij} \) equal SND(\(X_{ij} \))
 W_{ij} = \text{SND}(X_{ij}); \\
 \}
Generate the global geometric mean vector of the codebook of nonrandom weights as the standard weight (SW) vector.

The SW_j is the geometric mean of the real weights of each attribute of the input data set

\[
\forall j = 1 \text{ to } m
\]

\[
SW_j = \left(\prod_{i=1}^{n} W_{ij}\right)^{1/n};
\]

The SW includes SW_j

\[
\overline{SW} = (SW_1, SW_2, \ldots, SW_m)
\]

2- Fine-tuning through two techniques:
 // a) Smooth the components of the SW vector
 \[
 \forall j = 1 \text{ to } m
 \]
 Midrange (SW_j);
 // b) Data dimension reduction
 Delete attributes with weak weights of SW_j, that are close to zero;

3- Process of single layer UFFNN for clustering of input data set
 // Compute the exclusive threshold of each input instance of Xi
 \[
 \forall i = 1 \text{ to } n
 \forall j = 1 \text{ to } m
 \]
 \[
 \{\text{If } BW_j < > 0
 \]
 \[
 T_i = T_i + X_{ij} \times SW_j ;\}
 // Recognize and delete noise
 Delete isolated input instances with solitary thresholds T_i;
 // Semiclustering by using the K-step activation function
 \{
 Group the data points of input instances with similar thresholds (T_i) in one cluster;
 Learn and generate optimized number of clusters and their densities;
 \}
 \{
 Assigning the class label to each input instance by using training set;
 Prediction the class label to unlabeled input instances;
 Updating the number of clusters and density of each cluster
 \}

The essential feature of the proposed model is computing the SW vector as the extract of the codebook of real weights without using random values or random parameters, without updating weights, and computing the mean square error or any error function. The exclusive threshold of each input instance is generated based on the SW. Input instances of the data set were clustered based on grouping data points with similar global thresholds. The RSFFNN model is able to update the clusters and their densities based on assigning a class label to each input instance by utilizing the K-step activation function and training set. The performance of the RSFFNN method is during just one iteration.

3. EXPERIMENTAL RESULTS AND COMPARISON

In this section, the performance of the RSFFNN clustering was evaluated and compared with other related models. All of the experiments were implemented in Visual C#.Net in Microsoft Windows 7 Professional operating system with a 2-GHz Pentium processor. To evaluate the performance of the proposed model, a series of experiments on several related methods and data sets were used.

3.1. Data sets from the UCI repository

The Breast Cancer Wisconsin, Iris, and Spambase data sets from the UCI repository (Asuncion & Newman, 2007) are selected for evaluation of the proposed model as shown in the Table 2. Validation experiments are performed on three data sets selected from different domains from the UCI Irvine Machine Learning Database Repository (Asuncion & Newman, 2007). As mentioned, they are remarkable because most conventional methods do not process well on these data sets used for evaluating performance of the proposed method and comparing the results to other methods in this study. The type of data set is the source of clustering problems, such as estimation of the number of clusters and the density of each cluster; in other words, recognizing similarities of the objects and relationships between attributes of the data set. Large and high-dimensional data creates some difficulties of clustering, especially in real environments, as mentioned in the Introduction.

The model was also compared with the standard BPN (SBPN) model as a supervised FFNN classification model. For experimentation, the speed of processing was measured by the number of epochs. The accuracy of the methods is measured through the number of clusters and the quantity of correctly classified nodes (CCN), which shows the total nodes and the density with the correct class in the correct related cluster in all clusters created by the model. The CCNs are the same as the true positive and true negative nodes. For more information, the accuracy of the proposed method is measured by the F measure function for 10 folds of the test set. The precision of computing was considered with 15 decimal places for more dissimilar threshold values.

3.1.1. Breast Cancer Wisconsin data set

The Breast Cancer Wisconsin (original) data set is selected from the UCI repository. The collected data set is from the University of Wisconsin Hospitals, Madison, and Dr. William H. Wolberg reported through his clinical cases (Wolberg & Mangasarian, 1990; Murphy, 1997). As mentioned in the UCI repository, the data set characteristic is multivariable, the attributes characteristic is an integer, the number of data is 699, and after cleaning 683, the number of attributes is 10.
from life area. There are two classes: benign and malignant. The learning process of the RSFFNN model was performed in one epoch in 8.7262 ms, and the real weights were generated for completing the real codebook of the Breast Cancer Wisconsin data set. Figure 5 shows the computed SW vector SW_j of the real codebook based on real weights after fine-tuning. After the application of the SW vector of the real codebook, the model obtained the real threshold of each input instance. We compared the results of the proposed model with the results of some related models. Table 3 shows the speed of the clustering process based on the number of epochs and the accuracy based on the density of the CCN in the Breast Cancer Wisconsin data set by the RSFFNN model.

Table 3. The information of selected data sets in this study from the UCI Repository

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Characteristics</th>
<th>Number of Attributes</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer Wisconsin (original)</td>
<td>Multivariable, Integer</td>
<td>699, 10</td>
<td>Two classes: benign and malignant</td>
</tr>
<tr>
<td>Iris</td>
<td>Multivariable, Real</td>
<td>150, 4</td>
<td>Three classes: Iris Setosa, Iris Versicolour, and Iris Virginica</td>
</tr>
<tr>
<td>Spambase</td>
<td>Multivariable, Integer–real</td>
<td>4601, 57</td>
<td>Two classes: Spam and Non-Spam</td>
</tr>
</tbody>
</table>

Fig. 5. The computed standard weight vector from the Breast Cancer Wisconsin (original) data set by the real semisupervised feedforward neural network model.

3.1.2. Iris data set

The Iris data set was selected from the UCI repository. The Iris plants data set was created by Fisher (1950; Asuncion & Newman, 2007). As mentioned in the UCI repository, the data set characteristic is multivariable, the attributes characteristic is real, the number of data is 150, and the number of attributes is 4 from life area. There are three classes: Iris Setosa, Iris Versicolour, and Iris Virginica. The learning process of the RSFFNN model was performed in one epoch in 4.1744 ms, and the real weights were generated for completing the real codebook of the Iris data set. Figure 6 shows the computed SW vector of the codebook based on real weights by the RSFFNN model.

After the application of the SW, the model obtained the real threshold of each input instance. The results of the proposed model were compared with the results of some related mod-
els. Table 4 shows the speed of processing based on the number of epochs and the accuracy based on the density of the CCN for the Iris data set.

In Table 4, based on the results of the experiment, the SOM produced 123 CCN after 20 epochs. The CCN of the K-means and the NG methods are 134 and 139 after 20 epochs, respectively (Camastra & Verri, 2005). The CCN of the GNG method is 135 after 10 epochs (Costa & Oliveira, 2007). The CCN of the RUFFNN clustering model after 1 epoch was 145, and the accuracy of RUFFNN clustering was computed by using the F measure with 10 folds of the test set for this data set, which was 97.33% during just 1 epoch of training. The CCN of the proposed RSFFNN clustering model after 1 epoch is 150. The accuracy of the RFFNNS clustering is computed by using the F measure for this data set, which is 100% during just 1 epoch of training, similar to the density of CCNs. In the SBPN, the accuracy by the F measure is 94% after 140 epochs of training. The speed and the accuracy of the RSFFNN method show best results through using class labels of the training set and using nonrandom weights without relearning and updating weights.

3.1.3. Spambase data set

The Spambase data set is selected from the UCI repository. The Spam E-mail data set was created by Mark Hopkins, Erik Reeber, George Forman, and Jaap Suermondt (Asuncion & Newman, 2007). As mentioned in the UCI repository, the data set characteristic is multivariable, the attributes characteristics are integer-real, the number of data is 4601, and the number of attributes is 57 from computer area. There are two classes: spam and nonspam. The learning process of the RSFFNN model was performed in one epoch taking 337.1057 ms, and the real weights were generated for completing the real codebook of the Spambase data set. Figure 7 shows the computed SW vector of the real codebook based on real weights by the RSFFNN clustering model. The midrange technique was used for computing the SW of the Spambase data set.

After the application of the SW vector of the real codebook, the model obtained the exclusive threshold of each input instance. The results of the proposed model were compared with the results of some related models. Table 5 shows the speed of processing based on the number of epochs and the accuracy based on the density of the CCN in the Spambase data set by the RSFFNN method.

In Table 5, based on the results of the experiment, the SOM produced 1210 CCN after 20 epochs. The CCN of the K-means and the NG methods were 1083 and 1050 after 20 epochs, respectively (Camastra & Verri, 2005). The CCN of the GNG method was 967 after 5 epochs (Bouchachia et al., 2007). The CCN of the RUFFNN clustering model after 1 epoch was 2731, and the accuracy of the RUFFNN cluster-
ing was computed by using the F measure with 10 folds of the test set for this data set, which was 66.46% during just 1 epoch of training. The CCN of the proposed RSFFNN clustering model after 1 epoch was 4597, and its density of CCN was 99.91%, and the accuracy of the RSFFNN clustering was computed by using the F measure for this data set, which was 99.89% after just 1 epoch of training, while the SBPN accuracy by F measure was 79.50% after 2000 epochs of training. The speed and the accuracy of the RSFFNN method show best results through using class labels of the training set and using nonrandom weights without relearning and updating the weights.

3.2. Breast Cancer data set from the University of Malaya Medical Center

Validation experiments are performed on the breast cancer data set from the University of Malaya Medical Center (UMMC). The important sources of difficulty of medical data sets clustering and decision lie in limited observation, information, diagnosis, and prognosis of specialist; incomplete medical knowledge; and lack of enough time for diagnosis (Melek & Sadeghian, 2009).

The data set was collected by the UMMC, Kuala Lumpur, from 1992 until 2002 (Hazlina et al., 2004). As shown in Table 6, the data set was divided into nine subsets based on the interval of survival time: from the first to the ninth years.

As shown in Table 7, the breast cancer data set contains 13 attributes. The number of instances in the data set is 827, and the number of attributes is 13 continuous and 1 attribute for showing the binary class in two cases of alive or dead. The used breast cancer data set from the UMMC has class labels of “0” for alive and “1” for dead as constraints. Figure 8 shows the sample of breast cancer data set from the UMMC.

We considered nine subsets for the first through ninth years. The RSFFNN model was implemented on each data set by considering the class labels. Table 8 shows the results of the implementation of the proposed model. The number of instances of each subset; CPU time usage per second for training each subset during one epoch; and the accuracy of the semiclustering of each subset of breast cancer data set based on the F measure with 10 folds of test set by using the RSFFNN clustering model are shown.

Table 8 shows that the training process for each subset of the breast cancer data set took for 1 epoch between 13.7 and 43 ms of CPU time; and the accuracies of the RSFFNN for the breast cancer subdata sets were between 98.29% and 100%. For comparison with other similar methods in the scope of this research, we implemented the SOM-BPN as a hybrid method. The SOM clustered each subset of breast cancer data set and found the SW vector of each instance after 20 epochs. The BPN model fine-tuned the codebook of weights of unfolding the SOM model instead of random weights. The training process in the BPN was 25 epochs. The results of the hybrid method of the SOM-BPN are shown in Table 9 for every subset.

The PCA was considered as a preprocessing technique for dimension reduction and used by the BPN model. Table 9 shows the result of the PCA-BPN hybrid model for every subset of the breast cancer data set of the UMMC. The PCA took the time of the CPU for dimension reduction, and the BPN used the output of the PCA for classification after several epochs. The results of Table 9 show the accuracies of implementation of the PCA-BPN model for the breast cancer data set, which were between 63% and 99%, and the accuracies of implementation of the SOM-BPN model for each subset of the breast cancer data set, which were between 71% and 99%.

![Fig. 7. The computed standard weight vector from the Spambase data set by the real semisupervised feedforward neural network method.](image-url)
4. DISCUSSION

Comparing the RSFFNN clustering with other UFFNN methods, the RUFFNN clustering method, and BPN as a supervised classification method on Breast Cancer Wisconsin (original), Iris and Spambase data sets from the UCI repository showed the superior results of the RSFFNN model in speed and accuracy of training. Clustering of the medical data sets is difficult because of limited observation, information, diagnosis, and prognosis of the specialist; incomplete medical knowledge; and lack of enough time for diagnosis (Melek & Sadeghian, 2009). However, the developed RSFFNN method has the capability to overcome some of the problems associated with clustering in the prediction of survival time of breast cancer patients from the UMMC.

The RSFFNN method has the successful actions and features:

- Training in one layer and just after one epoch resulting in fast training.
- Initializing a codebook of weights without the use of any random number or random parameter directly by learning through the input instance values.
- Training of the RSFFNN method without the need for a training cycle, updating weights or computation of an error function.
- Semiclustering of the input data in two phases: first, the proposed method predicts the number of clusters, the densities of the clusters, and subsequently clusters the data set; and second, the method updates the clusters and their contents by using the class labels of the training set.

For computing time and memory complexities, we considered the parameters c, k, n, m, and S_m as the respective number of epochs, clusters, nodes, attributes, and size of each attri-

Table 6. The nine subsets of observed data of breast cancer from UMMC based on the interval of survival time

<table>
<thead>
<tr>
<th>Year of Treatment</th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>5th Year</th>
<th>6th Year</th>
<th>7th Year</th>
<th>8th Year</th>
<th>9th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>Data from 1993 to 1994</td>
<td>Data from 1994 to 1995</td>
<td>Data from 1995 to 1996</td>
<td>Data from 1996 to 1997</td>
<td>Data from 1997 to 1998</td>
<td>Data from 1998 to 1999</td>
<td>Data from 1999 to 2000</td>
<td>Data from 2000 to 2001</td>
<td>Data from 2001 to 2002</td>
</tr>
<tr>
<td>1994</td>
<td>Data from 1994 to 1995</td>
<td>Data from 1995 to 1996</td>
<td>Data from 1996 to 1997</td>
<td>Data from 1997 to 1998</td>
<td>Data from 1998 to 1999</td>
<td>Data from 1999 to 2000</td>
<td>Data from 2000 to 2001</td>
<td>Data from 2001 to 2002</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>Data from 1995 to 1996</td>
<td>Data from 1996 to 1997</td>
<td>Data from 1997 to 1998</td>
<td>Data from 1998 to 1999</td>
<td>Data from 1999 to 2000</td>
<td>Data from 2000 to 2001</td>
<td>Data from 2001 to 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Data from 1996 to 1997</td>
<td>Data from 1997 to 1998</td>
<td>Data from 1998 to 1999</td>
<td>Data from 1999 to 2000</td>
<td>Data from 2000 to 2001</td>
<td>Data from 2001 to 2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Data from 1997 to 1998</td>
<td>Data from 1998 to 1999</td>
<td>Data from 1999 to 2000</td>
<td>Data from 2000 to 2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Data from 1998 to 1999</td>
<td>Data from 1999 to 2000</td>
<td>Data from 2000 to 2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Data from 1999 to 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Data from 2000 to 2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. The information of the UMMC breast cancer data set attributes

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Attribute Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Patient’s age in year at time of first diagnosis</td>
</tr>
<tr>
<td>RACE</td>
<td>Ethnicity (Chinese, Malay, Indian, and others)</td>
</tr>
<tr>
<td>STG</td>
<td>Stage (how far the cancer has spread anatomically)</td>
</tr>
<tr>
<td>T</td>
<td>Tumor type (the extent of the primary tumor)</td>
</tr>
<tr>
<td>N</td>
<td>Lymph node type (amount of regional lymph node involvement)</td>
</tr>
<tr>
<td>M</td>
<td>Metastatic (presence or absence)</td>
</tr>
<tr>
<td>LN</td>
<td>Number of nodes involved</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen receptor (negative or positive)</td>
</tr>
<tr>
<td>GD</td>
<td>Tumor grade</td>
</tr>
<tr>
<td>PT</td>
<td>Primary treatment (type of surgery performed)</td>
</tr>
<tr>
<td>AC</td>
<td>Adjuvant chemotherapy</td>
</tr>
<tr>
<td>AR</td>
<td>Adjuvant radiotherapy</td>
</tr>
<tr>
<td>AT</td>
<td>Adjuvant tamoxifen</td>
</tr>
</tbody>
</table>
bute. Table 9 shows the time and memory complexities of the K-means, NG, GNG, SOM, and SBPN methods as supervised FFNNs that depend mainly on the number of weighted functions in the hidden layers f_h and the number of iterations c. Furthermore, Table 10 shows the time and memory complexity of the PCA, the RUFFNN, and the RSFFNN models.

The RSFFNN method is a linear semiclustering method and has time complexity and memory complexity of $O(n.m)$ and $O(n.m.sm)$ like the RUFFNN clustering method.

5. CONCLUSION AND FUTURE WORK

We developed a constraint-based model of RSFFNN clustering with the data dimension reduction ability to solve the serious problems of speed, accuracy, and memory complexity of the clusters. The RSFFNN can learn real weights and thresholds without using any random values and arbitrary parameters. A codebook of nonrandom weights was trained by feeding input instances directly to the network. Then a unique and exclusive threshold of each input instance was computed. The input instances were clustered based on their exclusive thresholds. The class label of each unlabeled input instance was predicted by considering a K-step activation function and the exclusive threshold. Finally, the number of clusters and density of each cluster were updated. To evaluate the performance of the proposed model, a series of experiments on several related methods and data sets were considered. The RSFFNN results were 99.85%, 100%, and 99.91% accuracies for the respective Breast Cancer, Iris, and Spam data sets from the UCI repository, and between 98.29% and 100% accuracies for the breast cancer data set from the UMMC. The time and memory complexities of the RSFFNN were $O(n.m)$ and $O(n.m.sm)$ based on the number of nodes, attributes, and size of the attribute. The experimental results show that the RSFFNN model demonstrates high speed and accuracy in performance with low time usage of training in just one epoch and efficient memory complexity of networks, which are the goals of this paper. For future work, an online dynamic FFNN semiclustering model will be suggested by improving the RSFFNN model.

Table 8. The results of implementation of the RSFFNN for each subset of breast cancer

<table>
<thead>
<tr>
<th>Year</th>
<th>CCN</th>
<th>Density (%)</th>
<th>Number of Data Instances in Each Subset</th>
<th>Epoch</th>
<th>CPU Time Usage (ms)</th>
<th>Accuracy of RSFFNN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>819</td>
<td>99.03</td>
<td>827</td>
<td>43</td>
<td>99.55</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>666</td>
<td>98.96</td>
<td>673</td>
<td>34.5</td>
<td>98.85</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>552</td>
<td>98.44</td>
<td>561</td>
<td>32.5</td>
<td>99.04</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>429</td>
<td>97.5</td>
<td>440</td>
<td>32</td>
<td>98.29</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>355</td>
<td>100</td>
<td>355</td>
<td>29.4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>270</td>
<td>100</td>
<td>270</td>
<td>15.8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>124</td>
<td>100</td>
<td>124</td>
<td>14.5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>56</td>
<td>100</td>
<td>56</td>
<td>13.7</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Comparing the accuracies of the hybrid methods of the PCA-BPN and the SOM-BPN with the RSFFNN for each subset of the breast cancer data set

<table>
<thead>
<tr>
<th>Year</th>
<th>PCA-BPN (%)</th>
<th>SOM-BPN (%)</th>
<th>RSFFNN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>76</td>
<td>82</td>
<td>99.55</td>
</tr>
<tr>
<td>2nd</td>
<td>63</td>
<td>72</td>
<td>98.85</td>
</tr>
<tr>
<td>3rd</td>
<td>62</td>
<td>71</td>
<td>99.04</td>
</tr>
<tr>
<td>4th</td>
<td>77</td>
<td>78</td>
<td>98.29</td>
</tr>
<tr>
<td>5th</td>
<td>83</td>
<td>86</td>
<td>100</td>
</tr>
<tr>
<td>6th</td>
<td>93</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>7th</td>
<td>98</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>8th</td>
<td>99</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>9th</td>
<td>99</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 10. The time complexities and memory complexities of the RSFFNN method and some related methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Time Complexity</th>
<th>Memory Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Means</td>
<td>$O(c.k.n.m)$</td>
<td>$O(n+k).m.sm)$</td>
</tr>
<tr>
<td>NG</td>
<td>$O(c.n^2. m)$</td>
<td>$O(c.n^2. m.sm)$</td>
</tr>
<tr>
<td>GNG</td>
<td>$O(c.n^2. m)$</td>
<td>$O(c.n^2. m.sm)$</td>
</tr>
<tr>
<td>SOM</td>
<td>$O(c.n.m^2)$</td>
<td>$O(c.n.m^2.sm)$</td>
</tr>
<tr>
<td>BPN</td>
<td>$O(c.f_h)$</td>
<td>$O(c.f_h.sm)$</td>
</tr>
<tr>
<td>PCA</td>
<td>$O(m^2. n) + O(m^3)$</td>
<td>$O(m^2. n.sm) + O(m^3).sm)$</td>
</tr>
<tr>
<td>RUFFNN</td>
<td>$O(n.m)$</td>
<td>$O(n.m.sm)$</td>
</tr>
<tr>
<td>RSFFNN</td>
<td>$O(n.m)$</td>
<td>$O(n.m.sm)$</td>
</tr>
</tbody>
</table>
REFERENCES

Anandie, R., & Kovalechuk, B. (2007). *Neural Networks for Data Mining: Constraints and Open Problems*. Ellensburg, WA: Central Washington University, Computer Science Department.

Feedforward neural network clustering

Roya Asadi is a PhD student in computer science in artificial intelligence (neural networks) at the University of Malaya. She received her bachelor’s degree in computer software engineering from the Electronics and Computer Engineering Faculty, Shahid Beheshti University and Computer Faculty of Data Processing Iran Co. (IBM), Tehran. She obtained her master’s degree in computer science in database systems from Putra University, Malaysia. Her professional work experience includes 12 years as a Senior Planning Expert 1. Her interests include artificial neural network modeling, medical informatics, and image processing.

Mitra Asadi is a Senior Expert Researcher at the Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran. She received her bachelor’s degree in laboratory sciences from Tabriz University. She also attained her English language translation degree and master’s of English language teaching from Islamic Azad University. She is pursuing her PhD in entrepreneurship technology at Islamic Azad University of Ghazvi.

Sameem Abdul Kareem is an Associate Professor in the Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya. She received her bachelor’s degree in mathematics (honors) from the University of Malaya, her master’s degree in computing from the University of Wales, Cardiff, and her PhD in computer science from the University of Malaya. Dr. Kareem’s interests include medical informatics, information retrieval, data mining, and intelligent techniques. She has published over 80 journal and conference papers.