Evidence for the role of a_1A-adrenoceptor subtype in the control of renal haemodynamics in fructose-fed Sprague–Dawley rat

Mohammed H. Abdulla · Munavvar A. Sattar · Edward J. Johns · Nor A. Abdullah · Md. Abdul Hye Khan

Received: 25 November 2010 / Accepted: 17 February 2011 / Published online: 4 March 2011 © Springer Verlag 2011

Abstract
Aim To explore the hypothesis that high fructose intake results in a higher functional contribution of a_1A-adrenoceptors and thereby blunts the adrenergically and angiotensin II (Ang II)-induced renal vasoconstriction.
Methods Twelve Sprague–Dawley rats received either 20% fructose solution (FPR) or tap water (C) to drink ad libitum for 8 weeks. The renal vasoconstrictor response to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II was determined in the presence and absence of 5-methylurapidil (5-MU) (a_1A-adrenoceptor antagonist) in a three-phase experiment (pre-drug, low- and high-dose 5-MU). Data, mean ± SEM were analysed by ANOVA or Student’s unpaired t-test with significance at $P < 0.05$.
Results FPR exhibited insulin resistance (HOMA index), hypertension and significant increases in plasma levels of glucose and insulin. All agonists caused dose-related reductions in cortical blood perfusion that were larger in C than in FPR while the magnitudes of the responses were progressively reduced with increasing doses of 5-MU in both C and FPR. The degree of 5-MU attenuation of the renal cortical vasoconstriction due to NA, ME and Ang II was significantly greater in the FPR compared to C.
Conclusions Fructose intake for 8 weeks results in smaller vasoreactive response to adrenergic agonists and Ang II. The a_1A-adrenoceptor subtype is the functional subtype that mediates renal cortical vasoconstriction in control rats, and this contribution becomes higher due to fructose feeding.
Keywords Renal vasoconstriction · Noradrenaline · 5-methylurapidil, fructose, a_1A-adrenoceptors

Introduction
Fructose intake produces an elevation in blood pressure [1], hypertriglyceridaemia [2] and hyperinsulinaemia [3]. Insulin resistance and hyperinsulinaemia in fructose-fed rats impair endothelial function and thereby contribute to the elevated blood pressure in this model [4]. Furthermore, an activation of the sympathetic nervous system due to fructose intake in the rat [5] has been associated with insulin resistance and may contribute to the onset and maintenance of cardiovascular and renal complications [6].

α_1-Adrenoceptors have been suggested to be the functionally relevant adrenoceptor subtype in the renal vasculature of the rat [7, 8]. Three α_1-adrenoceptor subtypes have been identified (α_1A, α_1D and α_1E), all from the G protein-coupled receptor family [9–11]. The α_1A-adrenoceptor subtype has been reported to be the major functional subtype mediating adrenergically induced vasoconstriction in the kidney [12–14], and there is a shift in the functional contribution of α_1A-adrenoceptor subtypes in certain