REVIEW
957 Quantitative and noninvasive assessment of chronic liver diseases using two-dimensional shear wave elastography
 Xie LT, Yan CH, Zhao QY, He MN, Jiang TA

ORIGINAL ARTICLE
Basic Study
971 Can bacterial virulence factors predict antibiotic resistant *Helicobacter pylori* infection?
 Brennan DE, Dowd C, O’Morain C, McNamara D, Smith SM

982 Dysregulation of PARP1 is involved in development of Barrett’s esophagus

992 Autophagy activation by Jiang Zhi Granule protects against metabolic stress-induced hepatocyte injury
 Zheng YY, Wang M, Shu XB, Zheng PY, Ji G

1004 Long noncoding RNA RP4 functions as a competing endogenous RNA through miR-7-5p sponge activity in colorectal cancer

Retrospective Study
1013 Quality indicators in pediatric colonoscopy in a low-volume center: Implications for training
 Lee WS, Tee CW, Koay ZL, Wong TS, Zahraaq F, Foo HW, Ong SY, Wong SY, Ng RT

1022 Prognostic value of lymph nodes count on survival of patients with distal cholangiocarcinomas
 Lin HP, Li SW, Liu Y, Zhou SJ

Clinical Practice Study
1035 Phenotypic and genotypic characterization of inflammatory bowel disease in children under six years of age in China
 Fang YH, Luo YY, Yu JD, Lou JG, Chen J

Randomized Controlled Trial
1046 Effect of polyglycolic acid sheet plus esophageal stent placement in preventing esophageal stricture after endoscopic submucosal dissection in patients with early-stage esophageal cancer: A randomized, controlled trial
 Chai NL, Feng J, Li LS, Liu SZ, Du C, Zhang Q, Linghu EQ
CASE REPORT

Four cancer cases after esophageal atresia repair: Time to start screening the upper gastrointestinal tract

ABOUT COVER
Editorial board member of *World Journal of Gastroenterology*, Sang Chul Lee, MD, PhD, Chief Doctor, Full Professor, Professor, Surgeon, Surgical Oncologist, Division of Colorectal Surgery, Department of General Surgery, Catholic University of Korea, Daejeon St. Mary’s Hospital, Daejeon 34943, South Korea

AIMS AND SCOPE
World Journal of Gastroenterology (*WJG*) is a peer-reviewed open access journal. *WJG* has a 2017 impact factor of 3.365 (5-year impact factor: 3.176), ranking WJG as 29th among 79 journals in gastroenterology and hepatology (quartile in category Q2).

INDEXING/ABSTRACTING
World Journal of Gastroenterology (*WJG*) is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central and Directory of Open Access Journals. The 2017 edition of Journal Citation Reports® cites the 2016 impact factor for *WJG* as 3.635 (5-year impact factor: 3.176), ranking *WJG* as 29th among 79 journals in gastroenterology and hepatology (quartile in category Q2).

EDITORS FOR THIS ISSUE
Responsible Assistant Editor: Xiang Li
Responsible Electronic Editor: Yan Huang
Proofing Editor-in-Chief: Lian-Sheng Ma

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Damian Garcia-Olmo, MD, PhD, Professor, Department of Surgery, Universidad Autonoma de Madrid, Department of General Surgery, Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain

Stephen C Strons, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), Professor of Medicine, Chief Gastroenterology, VA Long Beach Health Care System, University of California, Irvine, CA, 90822, United States

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL OFFICE
Ze-Mao Gong, Director
World Journal of Gastroenterology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com

COPYRIGHT
© 2018 Baishideng Publishing Group Inc. All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

ONLINE SUBMISSION
Full instructions are available online at http://www.wjgnet.com/bpg/printinfo/204

WJG | www.wjgnet.com

III
March 7, 2018 | Volume 24 | Issue 9 |
Retrospective Study

Quality indicators in pediatric colonoscopy in a low-volume center: Implications for training

Way-Seah Lee, Chun-Wei Tee, Zhong-Lin Koay, Tat-Seng Wong, Fatimah Zahraq, Hee-Wei Foo, Sik-Yong Ong, Shin-Yee Wong, Ruey-Terng Ng

Way-Seah Lee, Chun-Wei Tee, Zhong-Lin Koay, Tat-Seng Wong, Fatimah Zahraq, Hee-Wei Foo, Sik-Yong Ong, Shin-Yee Wong, Ruey-Terng Ng, Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur 59100, Malaysia

Way-Seah Lee, Paediatric and Child Health Research Group, University Malaya, Kuala Lumpur 50603, Malaysia

ORCID number: Way-Seah Lee (0000-0001-9163-2828); Chun-Wei Tee (0000-0002-1119-2971); Zhong-Lin Koay (0000-0002-8724-9903); Tat-Seng Wong (0000-0002-3076-228X); Fatimah Zahraq (0000-0002-2658-1945); Hee-Wei Foo (0000-0001-7761-0550); Sik-Yong Ong (0000-0001-9647-5788); Shin-Yee Wong (0000-0002-7486-0594); Ruey-Terng Ng (0000-0003-1656-5797).

Author contributions: Lee WS conceived the idea of the research; Lee WS, Ng RT, Ong SY and Foo HW provided the clinical data; Tee CW, Koay ZL, Wong TS and Zahraq F collected the data; Wong SY performed the statistical analysis; Lee WS and Tee CW analyzed the data; Lee WS and Tee CW analyzed the data; Lee WS wrote the first draft; All authors contributed equally to writing of the final draft; All authors authorized the final version of the manuscript.

Supported by Research grant from Ministry of Higher Education, Malaysia, No. UM.C/625/HR/MOHE/CHAN/13/1.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the University Malaya Medical Centre (MEC reference: 902.15).

Informed consent statement: Patients were not required to give informed consent to the study because the analysis performed used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: All authors declare no conflicts-of-interest related to this article.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Abstract

AIM
To study implications of measuring quality indicators on training and trainees’ performance in pediatric colonoscopy in a low-volume training center.

METHODS
We reviewed retrospectively the performance of pediatric colonoscopies in a training center in Malaysia over 5 years (January 2010-December 2015), benchmarked against five quality indicators: appropriateness of indications, bowel preparations, cecum and ileal...
examination rates, and complications. The European Society of Gastrointestinal Endoscopy guideline for pediatric endoscopy and North American Society for Pediatric Gastroenterology, Hepatology and Nutrition training guidelines were used as benchmarks.

RESULTS
Median (± SD) age of 121 children [males = 74 (61.2%)] who had 177 colonoscopies was 7.0 (± 4.6) years. On average, 30 colonoscopies were performed each year (range: 19-58). Except for investigations of abdominal pain (21/177, 17%), indications for colonoscopies were appropriate in the remaining 83%. Bowel preparation was good in 87%. One patient (0.6%) with severe Crohn’s disease had bowel perforation. Cecum examination and ileal intubation rate was 95% and 68.1%. Ileal intubation rate was significantly higher in diagnosing or assessing inflammatory bowel disease (IBD) than non-IBD (72.9% vs 50.0% P = 0.016). Performance of four trainees was consistent throughout the study period. Average cecum and ileal examination rate among trainees were 97% and 77%.

CONCLUSION
Benchmarking against established guidelines helps units with a low-volume of colonoscopies to identify area for further improvement.

Key words: Pediatric colonoscopies; Quality indicators; Performance

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Competency in colonoscopy is an essential component in the training for pediatric gastroenterology worldwide. We measured the performance of pediatric colonoscopy from a low-volume training center on quality indicators against established guidelines. The unit, which performed an average of 30 colonoscopies each year, performed well in clear indication for colonoscopy, good bowel preparation, safety and high rate of cecal examination (95%) but needs improvement for ileal intubation (at 68%). Benchmarking against established guidelines helps units with a low volume of colonoscopies to identify area for improvement.

INTRODUCTION
Colonoscopy is an essential diagnostic procedure for the evaluation and treatment of lower gastrointestinal pathologies in children. Major indications for colonoscopy in children include rectal bleeding, investigation of diarrhea, failure to thrive and perianal lesions, and as initial diagnostic evaluation for inflammatory bowel disease (IBD). Approximately 20%-30% of IBD patients have onset of disease in childhood. A study from Australia showed that IBD was the diagnosis in 58% of children who had initial diagnostic colonoscopy. The percentage is much lower in Asia, ranging from 10.9% in Taiwanese children to 19.6% in Korean children. The incidence of IBD is increasing worldwide. In Asia, including Malaysia, is increasing as well, although it is still relatively uncommon as compared to North America and Western Europe.

Competency in colonoscopy has become an essential component in the training syllabus for both adult and pediatric gastroenterology worldwide. In adult colonoscopy, cecal intubation and detection for adenoma are considered as standard quality measures. In children, however, routine screening for adenomas is generally not recommended. On the other hand, ileal intubation is essential for accurate diagnosis of IBD, particularly Crohn’s disease (CD). Thus, appropriate indication for colonoscopy, complete examination including inspection of cecum and terminal ileum, adequate bowel preparation and free of complications are all important quality indicators in pediatric colonoscopy.

In areas where the prevalence of IBD is low, such as Malaysia, the volume of pediatric colonoscopies performed may be limited. The reported cecum examination and ileal intubation rates vary. In Hong Kong, the cecal and ileal intubation rates were 97.6% and 75.6%. In Taiwan, the ileal intubation rate was 77.5%. In Australia, where the incidence of IBD is high, Singh et al. reported that the cecal and ileal intubation rates were 96.3% and 92.4%, respectively. A study on quality indicators published previously showed that performance benchmarked against quality indicators varies in different centers. To the best of our knowledge, however, no study on performance benchmarked against quality indicators from low-volume centers has been published previously.

We aimed to ascertain the performance of our unit when benchmarked against established quality indicators in pediatric colonoscopy covering the following areas: indications, quality of bowel preparation, safety and complications, cecal examination and terminal ileum intubation rates. We also assessed the implications of our performance to ascertain opportunities for improvements to the training program in this training center.

MATERIALS AND METHODS
This was a retrospective review on all pediatric colonoscopies performed between January 2010 and
December 2015 at the Paediatric Gastroenterology Unit, University Malaya Medical Centre (UMMC), Malaysia. The present study was approved by the institutional ethics review committee (MEC reference: 902.15). During the study period, the unit was staffed by one full-time consultant and a part-time visiting consultant. They were assisted by fellows-in-training, who spent the first 18 mo of a 3-year fellowship training program in the unit.

Data collection
Cases were retrieved from hospital and the unit database. The following data were collected: demographics and clinical features; indications for colonoscopy; laboratory data; degree of bowel preparation; extent of colonoscopic examination; and complications. Colonscopic and pathological diagnoses were ascertained. Cases were excluded if the data were incomplete.

Quality indicators
The following areas were used as quality indicators: (1) appropriateness of indications; (2) quality of bowel preparation and extent of colonoscopic examination, including (3) cecum examination and (4) ileal intubation; and (5) safety (including anesthesia and sedation) and complications. Factors affecting extent of examination and the performances of trainees were also analyzed.

Indications and preparations for colonoscopy
In our unit, each referral for colonoscopy was screened and decided by a consultant. Generally, the indications for colonoscopy followed the established guidelines, and has been reported previously. For the purpose of the present study, the European Society of Gastrointestinal Endoscopy (ESGE) guideline for pediatric endoscopy was used as a benchmark.

Sedation and anesthesia
In our unit, colonoscopies were usually performed under general anesthesia. In adolescents, sedation (generally a combination of midazolam and pethidine) was used occasionally at the discretion of the anesthetist.

Bowel preparation
Bowel preparation has been standardized throughout the study period. Two days prior to colonoscopy, each patient was allowed a low residue diet. On the night before the procedure, each patient had bowel cleansing with polyethylene glycol solution and glycerin rectal enema. The degree of bowel preparation observed during colonoscopy was not standardized. It was judged by the endoscopist as poor, fair, good or excellent.

Extent of colonoscopy
The extent of the colonoscopy was confirmed by visual identification of the colonic wall appearance, and the anatomy the cecum and terminal ileum. The biopsy of the terminal ileum was also used as an additional confirmation. The recommendation by North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) guidelines for training in pediatric gastroenterology was used as a benchmark. The NASPGHAN guidelines recommends a cecum and ileal examination rate of between 90%-95%.

Performance
For the purpose of the present study, analysis on performance was confined to colonoscopies where an inspection of ileum was intended. This included cases where intubation of terminal ileum was indicated (i.e., in diagnosing or assessing IBD), feasible (acceptable quality of bowel preparation where full examination was feasible) or safe (benefit of ileal intubation outweighs the risk of full examination, such as bowel perforation).

Performance by trainees
Analysis on the performance by trainees was confined to trainees who had completed a minimum of 12 mo training in the unit during the study period. Number of colonoscopies performed, cecum examination and ileal intubation rates were noted. In colonoscopies where trainees encountered technical difficulties during the procedure and were subsequently taken over by the consultant, the procedures were logged as performed by the consultant.

Statistical analysis
Data were collected and managed by using a statistical software program (SPSS version 20.0; SPSS Inc., IBM Corp., Armonk, NY, United States). Descriptive data were described in percentage, mean and median. Categorical data were analyzed using a two-tailed t test.
Another 22 (18%) patients had focal inflammation of the rectum (IBD-unclassified) or solitary rectal ulcer syndrome.

Trend for diagnosis of IBD in 121 patients
The number of new cases of IBD seen in the unit during the study period is shown in Figure 2. There was an increasing trend in the number of new IBD cases, especially for CD.

Sedation and anesthesia in 177 colonoscopies
Vast majority (165/177, 93.2%) of the procedures were performed under general anesthesia. The remaining 12 procedures (6.8%) were performed under sedation, being administered by anesthetist. No major events related to anesthesia or sedation were observed during the study period.

Bowel preparation in 177 colonoscopies
Bowel preparation was judged to be good by the endoscopist in 87% (155/177) of the patients, moderate in 0.6% (1/177) and bad in 12% (21/177) patients.

Cecum and terminal ileum intubation in 177 colonoscopies
Information on the extent of colonoscopy was available in all 177 procedures (Table 1). The overall ileal intubation rate was 54.2% (96/177). Cecum was examined in an additional 22.0% (39/177). Thus, the cecum was reached in 76.3% (135/177) of patients. The extents of colonoscopy of the remaining 42 procedures are shown in Table 1.

Indications for first colonoscopy in 121 patients
The most common indication was confirming the diagnosis of IBD (36/121, 30%; Table 1). Others were investigation of anemia or rectal bleeding (25/121, 21%). Investigation of abdominal pain was the indication in 17% (21/121). Most of the repeat colonoscopies were for disease assessment in IBD.

Colonoscopic findings in 121 patients
A positive finding was noted in 68 (56.2%) colonoscopies, while the remaining 53 (43.8%) had a normal colonoscopic finding. Indications for colonoscopy for the 53 patients with a negative finding were: excluding IBD (n = 18); disease assessment of pre-existing IBD (n = 4); assessment of abdominal pain (n = 8); ascertainment of lower gastrointestinal bleeding (n = 10); and, miscellaneous (n = 13).

Diagnosis in 121 patients
In addition to 16 patients who had colonoscopic assessment of preexisting IBD, a new clinical diagnosis or institution of new therapeutic measures was made in another 87 patients following colonoscopy. Thus, a total of 103 patients had a positive diagnosis. The diagnostic yield was 85%.

The colonoscopic diagnoses are shown in Table 1. Overall, 50 (41%) patients had a diagnosis of IBD (newly diagnosed, n = 34; diagnosis confirmed elsewhere, n = 16; Figure 2). Of these, 30 patients had CD and 20 had ulcerative colitis, respectively. Another 22 (18%) patients had focal inflammation of the rectum (IBD-unclassified) or solitary rectal ulcer syndrome.

Epidemiology, demographic features in 121 patients
There was a male preponderance (males = 74, 61%) in the 121 patients who had first colonoscopy (Table 1). The median (± SD) age was 7.5 (± 4.5) years. Eighty-one (67%) patients also had concomitant esophago-gastro-duodenoscopy (EGDS).

Figure 1 Number of colonoscopies performed each year during the study period.

Figure 1 Number of colonoscopies performed during the study period.
enterocolitis syndrome and autoimmune enteropathy), trichuriasis (n = 2), and assessment of previously confirmed solitary rectal ulcer syndrome (n = 2). Risk of perforation was judged to outweigh benefit of full examination in 5 patients. All had IBD with severe colitis and friable mucosal wall (ulcerative colitis, n = 3; CD, n = 2). Poor bowel preparation prevented a complete examination in 4 patients. A large rectal polyp obstructing the lumen (n = 1) and excessive bleeding in a patient with a large rectal polyp (n = 1) prevented a complete colonoscopy in 2 patients.

Of the remaining 141 patients in whom inspection of the terminal ileum was intended, the cecum examination and ileal intubation rates were 95.0% (134/141) and 68.1% (96/141), respectively. Overall, 45.8% of colonoscopies did not include an inspection of terminal ileum, and 31.9% did not reach terminal ileum when it was intended. Similarly, 24.3% of the procedures did not reach the cecum, and 5.0% failed to reach cecum when it was intended.

Factors affecting complete examination
Rate of complete examination was not significantly affected by the age of patients (ileal intubation rate; < 5 years (35/141) vs ≥ 5 years (106/141) = 62.9% vs 69.8% P = 0.44). However, the ileal intubation rate was significantly higher when the indication for the colonoscopy was for the diagnosis or assessment of

<p>| Table 1 Indications, diagnoses and quality indicators in 121 children who had 177 colonoscopies |
|--|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, males</td>
<td>74</td>
</tr>
<tr>
<td>Age in yr, median ± SD</td>
<td>7.5 ± 4.5</td>
</tr>
<tr>
<td>Concomitant esophagogastroduodenoscopy</td>
<td>81</td>
</tr>
<tr>
<td>Indications, n = 121</td>
<td></td>
</tr>
<tr>
<td>Suspected of inflammatory bowel disease, new patients</td>
<td>36</td>
</tr>
<tr>
<td>Per rectal bleeding/investigations of anemia</td>
<td>25</td>
</tr>
<tr>
<td>Investigation of gastrointestinal symptoms</td>
<td>21</td>
</tr>
<tr>
<td>Assessment of inflammatory bowel disease, diagnosed elsewhere</td>
<td>16</td>
</tr>
<tr>
<td>Suspected of colonic polyps</td>
<td>7</td>
</tr>
<tr>
<td>Exclusion of graft-versus-host disease or colonic malignancies</td>
<td>7</td>
</tr>
<tr>
<td>Assessment of failure to thrive/malabsorption</td>
<td>4</td>
</tr>
<tr>
<td>Others</td>
<td>10</td>
</tr>
<tr>
<td>Colonscopic diagnosis, n = 121</td>
<td></td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>30</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>20</td>
</tr>
<tr>
<td>Non-specific colitis or solitary rectal ulcer syndrome</td>
<td>22</td>
</tr>
<tr>
<td>Infective colitis</td>
<td>9</td>
</tr>
<tr>
<td>Colonic polyps</td>
<td>8</td>
</tr>
<tr>
<td>Graft-versus-host disease</td>
<td>5</td>
</tr>
<tr>
<td>Malabsorption</td>
<td>2</td>
</tr>
<tr>
<td>Allergic colitis</td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous diagnosis</td>
<td>5</td>
</tr>
<tr>
<td>No diagnosis</td>
<td>18</td>
</tr>
<tr>
<td>Extent of colonoscopic examination, 177 colonoscopies</td>
<td></td>
</tr>
<tr>
<td>Terminal ileum</td>
<td>96</td>
</tr>
<tr>
<td>Cecum</td>
<td>38</td>
</tr>
<tr>
<td>Ascending colon</td>
<td>9</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>13</td>
</tr>
<tr>
<td>Descending colon</td>
<td>12</td>
</tr>
<tr>
<td>Sigmoid colon</td>
<td>7</td>
</tr>
<tr>
<td>Rectum</td>
<td>1</td>
</tr>
<tr>
<td>Reached cecum but no terminal ileum intubation</td>
<td>134</td>
</tr>
<tr>
<td>Ileal intubation not intended, 177 colonoscopies</td>
<td>36</td>
</tr>
<tr>
<td>Not indicated</td>
<td>18</td>
</tr>
<tr>
<td>Distorted anatomy due to previous surgery</td>
<td>1</td>
</tr>
<tr>
<td>External stricture</td>
<td>2</td>
</tr>
<tr>
<td>Previous colostomy in Crohn’s disease</td>
<td>4</td>
</tr>
<tr>
<td>Large polyp at rectum</td>
<td>2</td>
</tr>
<tr>
<td>Risk of perforation outweighs benefit of full examination due to</td>
<td>5</td>
</tr>
<tr>
<td>Severe colitis</td>
<td></td>
</tr>
<tr>
<td>Poor bowel preparation</td>
<td>4</td>
</tr>
<tr>
<td>Full colonoscopic examination intended, 177 colonoscopies</td>
<td>141</td>
</tr>
<tr>
<td>Ileal intubation</td>
<td>96</td>
</tr>
<tr>
<td>Cecum examination</td>
<td>134</td>
</tr>
</tbody>
</table>

Some patients had more than one indication; Not intended include not indicated, not feasible or the risks of full examination outweigh the benefit of full examination.
During the study period, four trainees completed a minimum of 12-mo training in pediatric colonoscopy in the unit (Table 2). Part of the training period of another three trainees fell outside the study period and were not included in the analysis. The average number of colonoscopies performed was 29. The overall cecum examination rate was 97%, while the overall ileal intubation rate was 77%. There was a consistent performance by the trainees (Table 2).

Complications in 177 colonoscopies
A 7-year-old boy with CD who had gross delay in referral, severe malnutrition and severe mucosal ulcerations had iatrogenic perforation of the colon during the procedure. The patient had an uneventful recovery after colostomy and repair. Another patient with rectal polyp developed bleeding while it was removed during colonoscopy. The bleeding stopped after cautierization. No blood transfusion was required. No other complications were noted in the remaining 175 procedures, either associated with the procedure, anesthesia or sedation.

DISCUSSION
To the best of our knowledge, the present study is the first of its kind on performance benchmarked against established quality indicators in pediatric colonoscopy from a center where the volume of colonoscopy is low. During the study period, the number of colonoscopies performed in the center each year ranged from 19 to 58, with an average of 30. It was conducted in a setting with a low but rapidly increasing incidence of IBD.

Our results reveal that of the five quality indicators which were benchmarked against, the performance was high in four indicators. Most of the indications for colonoscopy performed in the unit were appropriate, following the recommendations of ESGE guidelines. Performances were good in bowel preparation, patient safety and complications. The cecum examination rate reached the expected rate at 95% by NASPghan, but was somewhat limited in ileal intubation rate at 68.1%. The performance of all trainees was consistently good in cecum examination but variable in ileal intubation.
There are several important implications on the results of the present study. Firstly, the indications for colonoscopies in the present study were mostly appropriate according to established guidelines[4]. The overall diagnostic yield was 85%. Previously, we observed that 99.7% of all EGDS and colonoscopies performed in the unit were appropriate[18]. The most common indications for colonoscopy were diagnosing or assessing IBD and ascertaining the cause of anemia. There was an increasing trend in the number of newly-diagnosed IBD cases during the study period. Investigation of abdominal symptoms, mainly abdominal pain, was the indication in only 17% of the patients[31].

In adult colonoscopy, screening for colon cancer is the main quality indicator[19]. Surrogate measures, such as colonic adenoma detection and complete examination of the colon, have been found to correlate with high-quality colonoscopy[20]. Pediatric colonoscopy, on the other hand, is fundamentally a different procedure with different indications, technical requirement, and different quality indicators[21]. The most important difference between adult and pediatric colonoscopies are the size of the patients and indications[21].

Screening for IBD is an important indication in pediatric colonoscopy. Differentiating between ulcerative colitis and CD is important in the diagnosis of IBD. Thus, examination of the cecum and terminal ileum are important quality indicators in pediatric colonoscopy[22]. In particular, intubation of the terminal ileum and sampling biopsy is essential for confirming the diagnosis of CD[23,24]. Pediatric endoscopy training guidelines suggest the cecal intubation rate to be at least 90% to 95%, with a comparable terminal ileum intubation rate[16,19].

Based on these quality indicators, the performances of centers vary. In Australia where screening for IBD was the major indication for colonoscopy, the reported cecum and ileal examination rates were 96.3% and 92.4%, respectively[5]. In Taiwan, the reported ileal intubation rate was 77.5%, while in China it was 81.7%[8,10]. The ileal intubation rates in the multicenter consortium review from the United States ranged from 30% to 90%[16].

After excluding procedures where either complete colonoscopy was not indicated, unsafe or not feasible, the cecum examination and ileal intubation rates in the present study were 95% and 68.1%, respectively. The cecum examination was comparable to the NASPGHAN pediatric gastroenterology training guidelines[19], but the ileal intubation rate was somewhat lower. Nevertheless, these figures were comparable with those reported in the region and the United States multicenter consortium study[8,10].

Bowel preparation was noted to be good in the majority of the cases (87%). Colonic perforation was observed in 1 patient who had severe long-standing CD prior to referral. The perforation rate was 0.5%. We reported two perforations in 66 colonoscopies previously[18].

The present study showed that all the trainees have a satisfactory cecum intubation rate, although the ileal intubation rate needs to be improved. To achieve cecal intubation examination and ileal intubation rate of 90%-95%, NASPGHAN guidelines for training in pediatric gastroenterology recommended 120 colonoscopies for pediatric trainees[19]. In this center, each trainee performed about 12-20 colonoscopies in children each year during their training. Before starting pediatric colonoscopy under supervision, the trainees were required to undergo training in adult colonoscopy, performing at least 50 colonoscopies in adult patients.

The implication of this is that the trainees would not have adequate training opportunity of reaching the recommended 120 colonoscopies in pediatric colonoscopy if the entire training was spent in this unit alone. Trainees spent between 18 mo to 24 mo of training in this center. The trainees usually start the training in endoscopic procedures with the adult gastroenterologists before being allowed to perform pediatric colonoscopy. The final year of the training is usually spent in a center of excellence for training in Australia or United Kingdom, where there is abundant opportunity for pediatric colonoscopy. Thus, even though the ileal intubation rate of the trainees noted in the present study did not reach the intended goal suggested by the NASPGHAN training guidelines[19], it is expected that their performance will be enhanced further once the overseas training is completed.

Another potential way to enhance colonoscopic skills is simulated colonoscopy training. Studies involving trainees in adult colonoscopy showed improved performances during patient-based colonoscopy. However, to date, no such study has been published involving training in pediatric colonoscopy.

Other important quality indicators which were not included in the present study were documentation of American Society of Anesthesiologist Physical Status Classification System (ASA) risk assessment and procedure duration. ASA risk assessment was routinely checked by the anesthetist. It was documented separately but was not captured in the present study. Additional potential measures of high-quality pediatric colonoscopy which have been mentioned but not included in this study are minimization of air insufflation, ease of patient sedation, duration of procedure, performance of mucosal biopsy sampling, patient recovery time and ongoing procedural competency assessment[22].

An obvious limitation to this study is its retrospective nature. The data was only collected from one center. However, our center is the only training center for pediatric gastroenterology in the whole country; we are unable to benchmark our performance against other centers. Nevertheless, with the exception of a somewhat lower ileal intubation rate, the performance in other quality indicators is excellent.
In conclusion, there is an increasing trend in the number of colonoscopies performed each year in this center. This is due to the increasing number of newly-diagnosed IBD cases during the study period. The performance of pediatric colonoscopy in this center was excellent in four of the five quality indicators benchmarked. The ileal intubation rate needs to be improved. A period of training in a center with a large volume of IBD will enhance the skills and performance of colonoscopy among the trainees of pediatric gastroenterology in Malaysia.

ARTICLE HIGHLIGHTS

Research background

The incidence of inflammatory bowel disease is on the rise worldwide, including in Asia. The gold standard for the diagnosis of inflammatory bowel disease is histologic confirmation from tissue biopsies obtained during esophago-gastro-duodenoscopy and colonoscopy. In particular, differentiating Crohn’s disease from ulcerative colitis is dependent upon inspection and biopsy of the terminal ileum. Thus, intubation of the terminal ileum is considered as an important quality indicator in pediatric colonoscopy. Current guidelines by the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition recommend the cecum examination and terminal ileum of 95%. This target should be used by pediatric gastroenterology centers worldwide to benchmark their performance.

Research motivation

Current literature showed that reported ileal intubation rate in pediatric colonoscopy from centers around Asia ranged from 75.6% to 77.6%. The performance of our unit, from an area where the incidence of inflammatory bowel disease is currently low but is on the rise, is unknown. Thus, we were motivated to benchmark our performance against current recommendations to identify areas for improvement to enhance the quality of our training program.

Research objectives

The main objective was to benchmark the performance of our unit, in particular the completeness of colonoscopic examination, i.e. cecal examination and ileal intubation, against current recommended guidelines. We also evaluated other indicators such as appropriateness of indications, level of bowel preparation, as well as safety and complications of the procedures encountered.

Research methods

We conducted a retrospective analysis on all the pediatric colonoscopies performed in a pediatric gastroenterology training center in Malaysia over a period of 8 years. We included the following indicators: appropriateness of indications; quality of bowel preparation; safety and complications; as well as cecal examination and terminal ileum intubation rates. The performances of trainees in the cecal and ileal examination rates were ascertained separately.

Research results

We found that of the 177 colonoscopies performed, the diagnostic yield was 85%, quality of bowel preparation was good in 87%, while one of 177 procedures was complicated by perforation during the procedure. The overall cecum examination rate was 76.3% and ileal intubation rate was 54.2%. After excluding colonoscopy where full colonoscopic examination was either not indicated, not feasible because of poor bowel preparation or unsafe (severe colitis), the cecum examination rate was 95.0% and ileal intubation rate was 68.1%. Among four trainees who completed a minimum of 12 mo training, the overall cecum rate was 97% while the overall ileal intubation rate was 77%. The performance of all trainees was consistent. Thus, the cecum examination rate of our unit was satisfactory but the rate of terminal ileum intubation needs further improvement. To improve the rate of ileal intubation, the trainees would spend part of their training program in a center of excellence with adequate volume of pediatric colonoscopy.

Research conclusions

The present study was the first attempt by a pediatric gastroenterology unit in Asia to benchmark its performance in pediatric colonoscopy against established international guidelines. Our study suggests that such a benchmark is both applicable and desirable. The study allows our unit to identify areas for further improvement. Trainees from our unit now routinely spend part of their training in a center of excellence to enhance their skills in colonoscopy.

Research perspectives

Benchmarking against established guidelines has been adopted as part of quality assurance of our unit. We plan to conduct a prospective study to include other indicators of good practice not included in this retrospective review. These include anesthetic risk assessment, duration of procedure, ease of sedation, quality of mucosal biopsy sampling and patient recovery time.

REFERENCES

Lee WS et al. Quality indicators in pediatric colonoscopy