Figure 3b Kaplan-Meier survival rate at 
1-year follow-up

METHODS A total of 5411 patients with 5836 DESs and one-year sur-
veilliance angiography between November 2011 and January 2014 were
respectively studied. The study endpoints included the incidence of SF,
target-lesion revascularization (TLR) and stent thrombosis (ST) at one-
year follow-up. Clinical outcome after TLR was also followed up.
ISR was defined as a percent diameter stenosis of >50% within the
sten at the time of follow up either within the stented segment or within
5 mm proximal or distal to the stent segment. The angiographic ISR
patterns were classified 1 to IV according to Mehran's classification (5).
A hinge motion lesion was defined as having a <10 difference in angle
between diastole and systole before the procedure.

RESULTS The SF rate was 12.5% (n=429) from patient level and 16.9%
(n=954) from stent level, with a higher incidence in the stainless steel
platform (23.3% vs. 12.0% with cobalt-chromium stent, p=0.001). No dif-
ferences were noted between domestic and international DES. SF was
correlated with clinical events. TLR was required in 88 (21%) patients with
SF, with repeat new generation DES implantation in 80 patients and
balloon angioplasty in eight patients. After 1223 (90%) days follow-up,
repeated ISR was detected in 19 (23.8%) patients, and eight (7.5%) patients
required repeat TLR. Of 19 repeat deployed DES, SF occurred in three
(1.6%) stents. By multivariate analysis, stents in SCA or LAD, longer stents,
hinge motion, overlapping and stainless stent (including Cypher, Excel and
Taxus stents) were the six independent predictors of SF.

CONCLUSION In an autopsy study, the incidence of SF was 29%,
which is much higher than clinically reported (7). Obviously, asymp-
tomatic SF, different definitions and modalities for SF, different per-
centages of surveillance angiography and longer follow-up duration
contribute to the underestimated of SF in the real world (8). Theo-
retically, all pro-fracture factors facilitate the process of metal fatigue
time over time (9-12), a mechanism leading to the postulation that more
frequent SF might be detected over one-year follow-up. Recently, Ohya et al.
(13) reported that the incidence Type III and IV SF at one-
year after stenting using Cypher stent was 6.8%, similar to our results.
However, we further found that clinically reported SF rate ~2% over
one-year among patients who had no SF confirmed by one-year
angiography. On the other hand, SF does not happen equally among
different stents, and we report more frequent SF in stainless steel
stents. Our results demonstrated that SF at one-year after DES im-
plantation was associated with higher rate of events, particularly in
patients with graded SF (severe SF). SF rate after one-year follow-up
was not common. Re-intervention using another DES resulted in a
significant reduction of repeat TLR.

BACKGROUND Percutaneous coronary intervention (PCI) to very
small vessel disease remains controversial and challenging. The
intended lesions usually are more diffuse, calcified and tortuous.
Usage of thin strut bare metal stent (BMS) with excellent crossing
profile in a very small vessel disease has increased the likelihood of
procedural success.

METHODS Thin strut cobalt chromium BMS implantation in a priori
pre-defined subgroups was investigated in a non-randomized, inter-
national, multi-center 'all-comers' observational study. Primary
end-point was the 9-months clinically driven target lesion revascu-
larization (TLR) rate and secondary end-points included the 9-months
major adverse cardiac events (MACE) and procedural success rates.
Data collection was done using an established electronic data acquisi-
tion form with built-in plausibility checks.

RESULTS A total of 783 patients with mean age of 70.4±12.8 years
were enrolled, 205 (26.2%) of them have vessel diameters of 2.5 mm
and smaller, and this group of patient was categorized as having very
small vessel disease. Older age and diabetics are associated with
higher incidence of very small vessel disease. Mean diameter for very
small vessel was 2.05±0.72 mm and mean diameter for vessel >
2.5 mm was 2.41±0.55 mm. Pre-dilatation was performed more often
in the very small vessel patients (52.2% vs 44.2%, p-value 0.007).
There was no difference in overall technical success in a very small
vessel disease (97.9% vs 97.7%). The 9-months TLR rate was 6.3% for
very small vessel and 1.7% for vessel > 2.5 mm (p=0.129). 9-months
and in-hospital MACE between very small vessel and vessel > 2.5 mm
were not significantly different either (13.1% vs 9.2%; p=0.1265 and
5.2% vs 5.7%; p=0.349) respectively.

CONCLUSION This study has demonstrated that the use of thin strut
coated cobalt chromium BMS in very small vessel disease was safe and effi-
cacious in the context of 'real-world' selection.

BACKGROUND In previous trials, longer drug-eluting stent (DES)
length has been associated with adverse clinical events. In current
practice, the appearance of ultra long DES (13,38mm) led to cover the
entire atherosclerotic lesion and the stented length tends to be longer
than the lesion length. However, the impact on clinical outcomes of the
ultra long everolimus-eluting stent (ULEES) implantation with differ-
cent Coronary Lesions was studied. The aim of this study was to investi-
gate the impact of stent length on the relative safety and efficacy of everolimus-eluting stents (EES).

METHODS Consecutive 730 patients (801 lesions) treated with EES
between April 2010 and January 2014 were divided into 4 groups ac-
cording to stent length. The association between stented length and
long-term outcomes was analyzed in ordinal categories (<15, 15 to 23,
24 to 32, and >32 mm) and as a continuous variable. Follow-up period
was 2 years and the restudy CAG was performed within 10-months
after PCI. We compared the major adverse clinical events (MACE)
between the two groups.

RESULTS The prevalence of diabetes, chronic kidney disease, and the
case of complex stent use were higher in the longest stented quartile
than in the other three groups. Initial success rate was similar in four
groups. There were no differences in 2-year TLR (1.9% vs 1.7% vs
2.9% vs 2.8%), stent thrombosis (0.6% vs 0% vs 1.0% vs 0.5%) and
MACE (4.4% vs 3.3% vs 4.7% vs 4.7%) rates between 4 groups.

CONCLUSION Like a result of the use of spot EES with short lesion,
our results suggest that the use of ultra long EES with diffuse long
lesion is effective and safe. Contrary to expectation, ultra long stent
with diffuse lesion wasn't the positive predictor of TLR.